Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chemical modification of n-GaAs electrodes with Os3+ gives a 15% efficient solar cell

Abstract

The minimization of interfacial recombination losses is a key factor in the operation of any semiconductor-based solar-energy-conversion device, including solid-state junctions, semiconductor/liquid junctions and colloidal suspensions of semiconductors. A frequently cited advantage of semiconductor/liquid junctions is the ability to manipulate surface recombination rates by chemical reactions1–7. A notable example is the improvement in current–voltage properties of n-GaAs photoanodes which have been exposed to aqueous solutions of Ru3+ ions8–10. Here we report new surface-modification procedures for GaAs which have produced the most efficient photoelectrochemical cell reported to date. We also report experiments which indicate that the current–voltage improvements in this system are accompanied by increased interfacial hole transfer rates at the GaAs/liquid interface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Heller, A. Am. chem. Soc. Symp. Ser. 146, 57–77 (1981).

    CAS  Google Scholar 

  2. Heller, A. Accts chem. Res. 14, 154–162 (1981).

    Article  ADS  CAS  Google Scholar 

  3. Bard, A. J. J. phys. Chem. 86, 172–177 (1982).

    Article  CAS  Google Scholar 

  4. Kiwi, J., Kalyanasundaram, K. & Gratzel, M. in Structure and Bonding Vol. 49 (ed. Jorgensen, K.) 37–125 (Springer, Berlin, 1982).

    Google Scholar 

  5. Wrighton, M. S. Accts chem. Res. 12, 303–310 (1979).

    Article  CAS  Google Scholar 

  6. Rajeshwar, K. J. appl. Electrochem. 15, 1–22 (1985).

    Article  CAS  Google Scholar 

  7. Peter, L. M. Electrochemistry 9, 66–100 (1978).

    Article  Google Scholar 

  8. Parkinson, B. A., Heller, A. & Miller, B. Appl. Phys. Lett. 33, 521–523 (1978).

    Article  ADS  CAS  Google Scholar 

  9. Parkinson, B. A., Heller, A. & Miller, B. J. electrochem. Soc. 126, 954–960 (1979).

    Article  ADS  CAS  Google Scholar 

  10. Chang, K. C., Heller, A., Schwartz, B., Menezes, S. & Miller, B. Science 196, 1097–1099 (1977).

    Article  ADS  CAS  Google Scholar 

  11. Parkinson, B. A. Accts chem. Res. 17, 431–437 (1984).

    Article  CAS  Google Scholar 

  12. Lewis, N. S. A. Rev. Mater. Sci. 14, 95–117 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Tenne, R. & Wold, A. Appl. Phys. Lett. 47, 707–709 (1985).

    Article  ADS  CAS  Google Scholar 

  14. Allongue, P. & Cachet, H. J. electrochem. Soc. 131, 2861–2868 (1984).

    Article  ADS  CAS  Google Scholar 

  15. Ludwig, M., Heymann, G. & Janietz, P. J. Vac. Sci. Technol. B4, 485–492 (1986).

    Article  CAS  Google Scholar 

  16. Nelson, R. J. et al. Appl. Phys. Lett. 36, 76–78 (1980).

    Article  ADS  CAS  Google Scholar 

  17. Gronet, C. M. & Lewis, N. S. J. phys. Chem. 88, 1310–1317 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tufts, B., Abrahams, I., Santangelo, P. et al. Chemical modification of n-GaAs electrodes with Os3+ gives a 15% efficient solar cell. Nature 326, 861–863 (1987). https://doi.org/10.1038/326861a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/326861a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing