Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Activation of NMDA receptors blocks GABAergic inhibition in an in vitro model of epilepsy

Abstract

The application of tetanic electrical stimuli to the stratum radiatum fibre pathway in the hippocampus in vitro produces an NMDA (N-methyl-D-aspartate) receptor-dependent enhancement of synaptic efficacy1–3. Repeated application of such stimuli produces a progressive enhancement of synaptic efficacy leading to the genesis of spontaneous and stimulation-evoked epileptiform discharges4,5. We have used this in vitro approach to explore the cellular mechanisms which underlie the kindling model of epilepsy. Kindling of the stratum radiatum fibre pathway in vitro induced a progressive, long-lasting reduction of both spontaneous and stimulation-evoked GABAergic (γ-amino butyric acid-mediated) inhibitory postsynaptic potentials (i.p.s.ps). The reduction of i.p.s.ps by kindling was associated with a profound decrease in the sensitivity of CA1 pyramidal neurons to ionophoretically applied GABA and an increase in sensitivity to NMDA. The reduction of i.p.s.ps and GABA sensitivity was prevented by kindling in the presence of the NMDA receptor antagonist D-2-amino-5-phosphonovalerate (D-APV). These results demonstrate that kindling-like stimulus patterns produce a reduction of GABAergic inhibition in the hippocampus resulting from a stimulus-induced postsynaptic activation of NMDA receptors. The modulation of GABAergic inhibition by NMDA receptors may cause the synaptic plasticity which underlies the kindling model of epilepsy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Collingridge, G. L., Kehl, S. J. & McLennan, H. J. Physiol., Lond. 334, 33–46 (1983).

    Article  CAS  Google Scholar 

  2. Harris, E. W., Ganong, A. H. & Cotman, C. W. Brain Res. 323, 132–137 (1984).

    Article  CAS  Google Scholar 

  3. Wigström, H. & Gustafsson, B. Neurosci. Lett. 44, 327–332 (1984).

    Article  Google Scholar 

  4. Slater, N. T., Stelzer, A. & Galvan, M. Neurosci. Lett. 60, 25–31 (1985).

    Article  CAS  Google Scholar 

  5. Stasheff, S. F., Bragdon, A. C. & Wilson, W. A. Brain Res. 344, 296–302 (1985).

    Article  CAS  Google Scholar 

  6. Alger, B. E. & Nicoll, R. A. Brain Res. 200, 195–200 (1980).

    Article  CAS  Google Scholar 

  7. Wong, R. K. S. & Watkins, D. J. J. Neurophysiol. 48, 938–951 (1982).

    Article  CAS  Google Scholar 

  8. Andersen, P., Dingledine, R., Gjerstad, L., Langmoen, I. A. & Mosfeldt Laursen, A. J. Physiol., Lond. 305, 279–296 (1980).

    Article  CAS  Google Scholar 

  9. Ben-Ari, Y., Krnjević, K. & Reinhardt, W. C. Can.J. Physiol. Pharmac. 57, 1462–1466 (1979).

    Article  CAS  Google Scholar 

  10. McCarren, M. & Alger, B. E. J. Neurophysiol. 53, 557–571 (1985).

    Article  CAS  Google Scholar 

  11. Herron, C. E., Williamson, R. & Collingridge, G. L. Neurosci. Lett. 61, 255–260 (1985).

    Article  CAS  Google Scholar 

  12. Dingledine, R., Hynes, M. A. & King, G. L. J. Physiol. Lond. 380, 175–189 (1986).

    Article  CAS  Google Scholar 

  13. Krnjević, K., Morris, M. E. & Ropert, N. Brain Res. 374, 1–11 (1986).

    Article  Google Scholar 

  14. MacDermott, A. B., Mayer, M. L., Westbrook, G. L., Smith, S. J. & Barker, J. L. Nature 321, 519–522 (1986).

    Article  ADS  CAS  Google Scholar 

  15. Inoue, M., Oomura, Y., Yakushiji, T. & Akaike, N. Nature 324, 156–158 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Collingridge, G. L. Trends pharmac. Sci. 6, 407–411 (1985).

    Article  CAS  Google Scholar 

  17. Dolphin, A. C., Errington, M. L. & Bliss, T. V. P. Nature 297, 496–498 (1982).

    Article  ADS  CAS  Google Scholar 

  18. Houser, C. R., Harris, A. B. & Vaughn, J. E. Brain Res. 383, 129–145 (1986).

    Article  CAS  Google Scholar 

  19. Roberts, E. Adv. Neurol. 44, 319–341 (1986).

    CAS  PubMed  Google Scholar 

  20. Krnjević, K. Physiol. Rev. 54, 418–540 (1974).

    Article  Google Scholar 

  21. Nicoll, R. A. & Alger, B. E. Science 212, 957–959 (1981).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stelzer, A., Slater, N. & ten Bruggencate, G. Activation of NMDA receptors blocks GABAergic inhibition in an in vitro model of epilepsy. Nature 326, 698–701 (1987). https://doi.org/10.1038/326698a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/326698a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing