Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The nuclear lamina is a meshwork of intermediate-type filaments

Abstract

The nuclear lamina, a protein meshwork lining the nucleoplasmic surface of the inner nuclear membrane1,2, is thought to provide a framework for organizing nuclear envelope structure3 and an anchoring site at the nuclear periphery for interphase chromatin3–5. In several higher eukaryotic cells, the lamina appears to be a polymer comprised mainly of one to three immunologically related polypeptides of relative molecular mass (Mr) 60,000–75,000 (60–70K) termed lamins1,2. Three lamins (A, B, and C) are typically present in mammalian somatic cells. Previous studies on nuclear envelopes of rat liver6 and Xenopus oocytes7 suggested that the lamina has a fibrillar or filamentous substructure. Interestingly, protein sequences recently deduced for human lamins A and C from complementary DNA clones8,9 indicate that both of these polypeptides contain a region of 350 amino acids very similar in sequence to the coiled-coil α-helical rod domain that characterizes all intermediate-type filament (IF) proteins10,11. Here we analyse the supramolecular organization of the native nuclear lamina and the structure and assembly properties of purified lamins, and show that the lamins constitute a previously unrecognized class of IF polypeptides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gerace, L., Comeau, C. & Benson, M. J. Cell Sci. Suppl. 1, 137–160 (1984).

    Article  CAS  Google Scholar 

  2. Krohne, G. & Benavente, R. Expl. Cell Res. 162, 1–10 (1986).

    Article  CAS  Google Scholar 

  3. Gerace, L., Blum, A. & Blobel, G. J. Cell Biol. 79, 546–566 (1978).

    Article  CAS  Google Scholar 

  4. Hancock, R. & Hughes, M., Biol. Cell 44, 201–212 (1982).

    CAS  Google Scholar 

  5. Lebkowski, J. & Laemmli, U. J. molec. Biol. 156, 325–344 (1982).

    Article  CAS  Google Scholar 

  6. Dwyer, N. & Blobel, G. J. Cell Biol. 70, 581–591 (1976).

    Article  CAS  Google Scholar 

  7. Scheer, U., Kartenbeck, J., Trendelenburg, M., Stadler, J. & Franke, W. J. Cell Biol. 69, 1–18 (1976).

    Article  CAS  Google Scholar 

  8. McKeon, F., Kirschner, M. & Caput, D. Nature 319, 463–468 (1986).

    Article  ADS  CAS  Google Scholar 

  9. Fisher, D., Chaudhary, N. & Blobel, G. Proc. natn. Acad. Sci. U.S.A. (in the press).

  10. Weber, K. & Geisler, N. Ann. N.Y. Acad. Sci. 455, 126–143 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Steinert, P., Steven, A. & Roop, D. Cell 42, 411–419 (1985).

    Article  CAS  Google Scholar 

  12. Havre, P. & Evans, D. Biochemistry 22, 2852–2860 (1983).

    Article  CAS  Google Scholar 

  13. Ip, W., Hartzer, M., Pang, S. & Robson, R. J. molec. Biol. 183, 365–375 (1985).

    Article  CAS  Google Scholar 

  14. Zachroff, R., Goldman, A., Jones, J., Steinert, P. & Goldman, R. J. Cell Biol. 98, 1231–1237 (1984).

    Article  Google Scholar 

  15. Goldman, A., Maul, G., Steinert, P., Yang, H. & Goldman, R. Proc. natn. Acad. Sci. U.S.A. 83, 3839–3843 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Geisler, N., Kaufmann, E. & Weber, K. J. molec. Biol. 182, 173–177 (1985).

    Article  CAS  Google Scholar 

  17. Eichner, R., Rew, P., Engle, A. & Aebi, U. Ann. N.Y. Acad. Sci. 455, 381–402 (1985).

    Article  ADS  CAS  Google Scholar 

  18. Steven, A., Trus, B., Hainfeld, J., Wall, J. & Steinert, P. Ann. N.Y. Acad. Sci. 455, 371–379 (1985).

    Article  ADS  CAS  Google Scholar 

  19. Krohne, G., Franke, W. & Scheer, U. Expl Cell Res. 116, 85–102 (1978).

    Article  CAS  Google Scholar 

  20. Stick, R. & Hausen, P. Cell 41, 191–200 (1985).

    Article  CAS  Google Scholar 

  21. Fawcett, D. Am. J. Anat. 119, 129–146 (1966).

    Article  CAS  Google Scholar 

  22. Shelton, K., Higgins, L., Cochran, D., Ruffolo, J. & Egle, P. J. biol. Chem. 255, 10978–10983 (1980).

    CAS  PubMed  Google Scholar 

  23. Burke, B. & Gerace, L. Cell 44, 639–652 (1986).

    Article  CAS  Google Scholar 

  24. Fenner, C., Traut, R., Mason, D. & Wikman-Coffelt, J. Analyt. Biochem. 63, 595–602 (1975).

    Article  CAS  Google Scholar 

  25. Martin, R. & Ames, B. J. biol. Chem. 236, 1372–1379 (1961).

    CAS  PubMed  Google Scholar 

  26. Yphantis, D. Biochemistry 3, 297–317 (1964).

    Article  CAS  Google Scholar 

  27. Gurdon, J. J. Embryol. exp. Morph. 36, 523–540 (1976).

    CAS  PubMed  Google Scholar 

  28. Feldherr, C. & Richmond, P. Meth. Cell Biol. 17, 75–79 (1978).

    Article  CAS  Google Scholar 

  29. Fowler, W. & Aebi, U. J. ultrastruct. Res. 83, 319–334 (1983).

    Article  CAS  Google Scholar 

  30. Aebi, U., Fowler, W., Isenberg, G., Pollard, T. & Smith, P. J. Cell Biol. 91, 340–351 (1981).

    Article  CAS  Google Scholar 

  31. Wrigley, N. J. ultrastruct. Res. 24, 454–464 (1968).

    Article  CAS  Google Scholar 

  32. Gerace, L., Ottaviano, Y. & Kondor-Koch, C. J. Cell Biol. 95, 826–837 (1982).

    Article  CAS  Google Scholar 

  33. Pollard, T., Stafford, W. & Porter, M. J. biol. Chem. 253, 4798–4808 (1978).

    CAS  PubMed  Google Scholar 

  34. Geisler, N. & Weber, K. J. molec. Biol. 151, 565–571 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aebi, U., Cohn, J., Buhle, L. et al. The nuclear lamina is a meshwork of intermediate-type filaments. Nature 323, 560–564 (1986). https://doi.org/10.1038/323560a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/323560a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing