Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Activation of two signal-transduction systems in hepatocytes by glucagon

Abstract

The ability of glucagon to stimulate glycogen breakdown in liver played a key part in the classic identification of cyclic AMP and hormonally stimulated adenylate cyclase1. But several observations indicate that glucagon can exert effects independent of elevating intracellular cAMP concentrations2–7. These effects are probably mediated by an elevation8,9 of the intracellular concentration of free Ca2+ although the mechanism by which this occurs is unknown. We show here that glucagon, at the low concentrations found physiologically, causes both a breakdown of inositol phospholipids and the production of inositol phosphates. Indeed, we show that the glucagon analogue, (1-N-α-trinitrophenylhistidine,12-homo-arginine)glucagon (TH-glucagon), which does not activate adenylate cyclase or cause any increase in cAMP in hepatocytes yet can fully stimulate glycogenolysis, gluconeogenesis and urea synthesis10, stimulates the production of inositol phosphates. This stimulation of inositol phospholipid metabolism by low concentrations of glucagon provides a mechanism11,12 whereby glucagon can exert cAMP-independent actions on target cells. We suggest that hepatocytes possess two distinct receptors for glucagon, a GR-1 receptor coupled to stimulate inositol phospholipid breakdown and a GR-2 receptor coupled to stimulate adenylate cyclase activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sutherland, E. W. & Rall, T. W. J. biol. Chem. 232, 1077–1091 (1958).

    CAS  Google Scholar 

  2. Birnbaum, M. J. & Fain, J. N. J. biol. Chem. 252, 528–535 (1977).

    CAS  Google Scholar 

  3. Okajima, F. & Ui, M. Archs Biochem. Biophys. 175, 549–557 (1976).

    Article  CAS  Google Scholar 

  4. Cardenas-Tanus, R. & Garcia-Sainz, J. A. FEBS Lett. 143, 1–4 (1982).

    Article  CAS  Google Scholar 

  5. Khan, B. A., Bregman, M. D., Nugent, C. A., Hruby, V. J. & Brendel, K. Biochem. biophys. Res. Commun. 93, 729–736 (1980).

    Article  CAS  Google Scholar 

  6. Heyworth, C. M., Wallace, A. V. & Houslay, M. D. Biochem. J. 214, 99–110 (1983).

    Article  CAS  Google Scholar 

  7. Heyworth, C. M. & Houslay, M. D. Biochem. J. 214, 93–98 (1983).

    Article  CAS  Google Scholar 

  8. Sistaire, F. D., Picking, R. A. & Haynes, R. C. J. biol. Chem. 260, 12744–12747 (1985).

    Google Scholar 

  9. Mauger, J.-P. & Claret, M. FEBS Lett. 195, 106–110 (1986).

    Article  CAS  Google Scholar 

  10. Corvera, S. et al. Biochim. biophys. Acta 804, 434–441 (1984).

    Article  CAS  Google Scholar 

  11. Berridge, M. J. & Irvine, R. F. Nature 312, 315–321 (1984).

    Article  ADS  CAS  Google Scholar 

  12. Downes, C. P. & Michell, R. H. Molec. Aspects Cell Regul. 4, 2–56 (1985).

    Google Scholar 

  13. Creba, J. A., Downes, C. P., Hawkins, P. T., Brewster, G., Michell, R. H. & Kirk, C. J. Biochem. J. 212, 733–747 (1983).

    Article  CAS  Google Scholar 

  14. Houslay, M. D. & Elliott, K. R. F. FEBS Lett. 359–363 (1979).

  15. Heyworth, C. M., Whetton, A. D., Wong, S., Martin, R. B. & Houslay, M. D. Biochem. J. 228, 593–603 (1985).

    Article  CAS  Google Scholar 

  16. Heyworth, C. M., Hanski, E. & Houslay, M. D. Biochem. J. 222, 189–194 (1984).

    Article  CAS  Google Scholar 

  17. Thomas, A. P., Alexander, J. & Williamson, J. F. J. biol Chem. 259, 5574–5584 (1984).

    CAS  PubMed  Google Scholar 

  18. Bocckino, S. B., Blackmore, P. F. & Exton, J. H. J. biol Chem. 260, 14201–14207 (1985).

    CAS  PubMed  Google Scholar 

  19. Heyworth, C. M., Wilson, S. R., Gawler, D. & Houslay, M. D. FEBS Lett. 187, 196–200 (1985).

    Article  CAS  Google Scholar 

  20. Sonne, O., Berg, T. & Christofferson, T. J. biol. Chem. 253, 3203–3210 (1978).

    CAS  Google Scholar 

  21. Musso, G. F., Assoian, R. K., Kaiser, E. T., Kezdy, F. J. & Tager, H. S. Biochem. biophys. Res. Commun. 119, 713–719 (1984).

    Article  CAS  Google Scholar 

  22. Heyworth, C. M. & Houslay, M. D. Biochem. J. 214, 547–552 (1983).

    Article  CAS  Google Scholar 

  23. Berridge, M. J., Downes, C. P. & Hanley, M. R. Biochem. J. 206, 587–595 (1982).

    Article  CAS  Google Scholar 

  24. Bregman, M. D., Trivedi, D. & Hruby, V. J. J. biol Chem. 255, 11725–11733 (1980).

    CAS  PubMed  Google Scholar 

  25. Berridge, M. J., Dawson, R. M. C., Downes, C. P., Heslop, J. P. & Irvine, R. F. Biochem. J. 212, 473–482 (1983).

    Article  CAS  Google Scholar 

  26. Houslay, M. D., Metcalfe, J. C., Warren, G. B., Hesketh, T. R. & Smith, G. A. Biochim. biophys. Acta 436, 489–494 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wakelam, M., Murphy, G., Hruby, V. et al. Activation of two signal-transduction systems in hepatocytes by glucagon. Nature 323, 68–71 (1986). https://doi.org/10.1038/323068a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/323068a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing