Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Aluminium/silicon disordering and melting in sillimanite at high pressures

Abstract

Naturally occurring polymorphs of Al2SiO5 (andalusite, kyanite and sillimanite) have assumed a special significance for geologists because of their value as indicators of the pressures (P) and temperatures (T) experienced by metamorphic rocks1,2, and for materials scientists because the binary system Al2SiO5–Al2O3 contains the important refractory mineral, mullite3. The equilibrium stability field of sillimanite in natural rocks and the process by which it can be transformed to mullite for ceramic materials (mullitization) have received particular attention because of the role of cation ordering (Al3+/Si4+) in stabilizing these structures1–7. Here we present the results of annealing experiments undertaken to determine the disordering behaviour of sillimanite crystals at high confining pressures. At P18–20 kbar and T1,300–1,700 °C, they undergo partial melting to give a SiO2-rich melt. The residual crystals become progressively more disordered as they become enriched in Al2O3 until they transform to a higher-symmetry structure. Our observations shed new light on previous thermochemical studies of Al/Si order–disorder in sillimanite and on the phase relationships between sillimanite and mullite.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Day, H. W. & Kumin, H. J. Am. J. Sci. 280, 265–287 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Ribbe, P. H., 5 (2nd edn), 189–214 (1982).

  3. Cameron, W. E. Bull. Am. Ceram. Soc. 56, 1003–1007, 1011 (1977).

    CAS  Google Scholar 

  4. Cameron, W. E. Am. Miner. 62, 747–755 (1977).

    CAS  Google Scholar 

  5. Cameron, W. E. Phys. & Chem. Miner. 1, 265–272 (1977).

    Article  ADS  CAS  Google Scholar 

  6. Guse, W., Saalfeld, H. & Tjandra, J. Neues Jb. Miner. Mh. 175–181 (1979).

  7. McConnell, J. D. C. & Heine, V. Phys. Rev. B 31, 6140–6142 (1985).

    Article  ADS  CAS  Google Scholar 

  8. Greenwood, H. J. Mem. geol. Soc. Am. 132, 553–571 (1972).

    Google Scholar 

  9. Carpenter, M. A. Rev. Miner. 14, 187–223 (1985).

    CAS  Google Scholar 

  10. Beger, R. M., Burnham, C. W. & Hays, J. F. Geol. Soc. Am. Abstr. Prog. 2, 490–491 (1970).

    Google Scholar 

  11. Navrotsky, A., Newton, R. C. & Kleppa, O. J. Geochim. cosmochim. Acta 37, 2497–2508 (1973).

    Article  ADS  CAS  Google Scholar 

  12. Burnham, C. W. Carnegie Inst. Wash. Yb. 63, 227–228 (1964).

    CAS  Google Scholar 

  13. Menard, D. & Doukhan, J.-C. J. Phys. (Fr.) 39, L19–L22 (1978).

    Google Scholar 

  14. Doukhan, J.-C. & Christie, J. M. Bull. Minér. 105, 583–589 (1982).

    CAS  Google Scholar 

  15. Lefebvre, A. & Paquet, J. Bull. Minér. 106, 287–292 (1983).

    Article  CAS  Google Scholar 

  16. Doukhan, J.-C., Doukhan, N., Koch, P. S. & Christie, J. M. Bull. Minér. 108, 81–96 (1985).

    CAS  Google Scholar 

  17. Aksay, I. A. & Pask, J. A. J. Am. Ceram. Soc. 58, 507–512 (1975).

    Article  CAS  Google Scholar 

  18. Hariya, Y., Dollase, W. A. & Kennedy, G. G. Am. Miner. 54, 1419–1441 (1969).

    Google Scholar 

  19. Chatterjee, N. D. & Schreyer, W. Contr. Miner. Petrol. 36, 49–62 (1972).

    Article  ADS  CAS  Google Scholar 

  20. Beran, A., Hafner, St. & Zemann, J. Neues Jb. Miner. Mh. 219–229 (1983).

  21. Navrotsky, A. Rev. Miner. 14, 225–275 (1985).

    CAS  Google Scholar 

  22. Cameron, W. E. Geol. Mag. 113, 497–592 (1976).

    Article  ADS  CAS  Google Scholar 

  23. Cameron, W. E. Nature 264, 736–738 (1976).

    Article  ADS  CAS  Google Scholar 

  24. Wenk, H.-R. Neues Jb. Miner. Abh. 146, 1–14 (1983).

    CAS  Google Scholar 

  25. Cameron, W. E. Am. Miner. 61, 1025–1026 (1976).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holland, T., Carpenter, M. Aluminium/silicon disordering and melting in sillimanite at high pressures. Nature 320, 151–153 (1986). https://doi.org/10.1038/320151a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/320151a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing