Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Attachment of transported vesicles to microtubules in axoplasm is facilitated by AMP-PNP

Abstract

Axoplasm extruded from the squid giant axon has been used to analyse the molecular mechanisms of intracellular vesicle transport1,2. Using video-enhanced light microscopy, vesicle transport can be observed directly on individual microtubules at the edge of the axoplasm2–4. Here we report that AMP-PNP (adenyl-5′-yl imidodiphosphate), a non-hydrolysable analogue of ATP, reversibly inhibited vesicle transport. Moreover, vesicles in solution attach to the microtubules and form relatively stable complexes. AMP-PNP may produce this effect by binding to an ATP-binding site on the transport machinery, thereby stabilizing the motility complex that is normally formed by a transported vesicle, an ATPase and a microtubule. The effects of AMP-PNP on the vesicle transport system indicate that the enzymatic machinery of this system differs significantly from that of the actomyosin system or the dynein–microtubule system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brady, S. T., Lasek, R. J. & Allen, R. D. Science 218, 1129–1131 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Brady, S. T., Lasek, R. J. & Allen, R. D. Cell Motil. 5, 81–101 (1985).

    Article  CAS  Google Scholar 

  3. Allen, R. D. et al. J. Cell Biol. 100, 1736–1752 (1985).

    Article  CAS  Google Scholar 

  4. Schnapp, B., Vale, R. D., Sheetz, M. P. & Reese, T. S. Cell 40, 449–454 (1985).

    Article  Google Scholar 

  5. Huxley, H. E. Cold Spring harb. Conf. Cell Prolif. 3, 115–128 (1976).

    CAS  Google Scholar 

  6. Eisenberg, E. & Greene, L. A. Rev. Physiol. 42, 293–309 (1980).

    Article  CAS  Google Scholar 

  7. Gibbons, I. R. J. Cell Biol. 91, 107s–124s (1981).

    Article  CAS  Google Scholar 

  8. Satir, P., Wais-Steider, J., Lebduska, S., Nasr, A. & Avolio, J. Cell Motil. 1, 303–327 (1981).

    Article  CAS  Google Scholar 

  9. Lymn, R. W. & Taylor, E. W. Biochemistry 10, 4617–4624 (1971).

    Article  CAS  Google Scholar 

  10. Mitchell, D. R. & Warner, F. D. J. biol. Chem. 256, 12535–12544 (1981).

    CAS  PubMed  Google Scholar 

  11. Yount, R. G., Babcock, D., Ballantyne, W. & Ojala, D. Biochemistry 10, 2484–2489 (1971).

    Article  CAS  Google Scholar 

  12. Greene, L. E. & Eisenberg, E. J. biol. Chem. 255, 543–548 (1980).

    CAS  PubMed  Google Scholar 

  13. Reedy, M. C., Reedy, M. K. & Goody, R. S. J. Muscle Res. Cell Motil. 4, 55–81 (1983).

    Article  CAS  Google Scholar 

  14. Okuno, M. & Brokaw, C. J. J. Muscle Res. Cell Motil. 2, 131–140 (1981).

    Article  CAS  Google Scholar 

  15. Miller, R. H. & Lasek, R. J. Biol. Bull. 167, 503–504 (1984).

    Google Scholar 

  16. Smith, D. S. Phil. Trans. R. Soc. B261, 395–405 (1971).

    Article  CAS  Google Scholar 

  17. Gilbert, S. P., Allen, R. D. & Sloboda, R. D. Nature 315, 245–248 (1985).

    Article  ADS  CAS  Google Scholar 

  18. Forman, D., Brown, K. J., Livengood, D. R. J. Neurosci. 3, 1279–1288 (1983).

    Article  CAS  Google Scholar 

  19. Forman, D., Brown, K. J. & Promersberger, M. E. Brain Res. 272, 194–197 (1983).

    Article  CAS  Google Scholar 

  20. Lasek, R. J. Curr. Topics Membranes Transport 22, 39–53 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lasek, R., Brady, S. Attachment of transported vesicles to microtubules in axoplasm is facilitated by AMP-PNP. Nature 316, 645–647 (1985). https://doi.org/10.1038/316645a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/316645a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing