Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Growth-rate dependent regulation of mRNA stability in Escherichia coli

Abstract

The rate of production of bacterial gene products is known to vary with the rate of cell growth, the concentrations of many cellular proteins are altered during times of decreased growth rate1. In addition, proteins whose in vivo levels show no significant alterations with changes in cell doubling time must be synthesized at rates that vary in direct proportion to the growth rate of the cell. In certain instances, growth-rate dependent gene regulation has been shown to occur at the transcriptional or translational level2,3. Another potentially important element in the regulation of gene expression is the stability of messenger RNA. We report here the effect of bacterial growth rate on the half lives of four different monocistronic Escherichia coli mRNA species. The stabilities of two of these species, the transcripts of the ompA and cat genes4–6, exhibit a marked dependence on cell growth rate, whereas the half lives of the transcripts of the lpp and bla genes7,8 are constant over a broad range of cell doubling times. Our results indicate that E. coli can alter the rate of synthesis of certain proteins by modulating mRNA stability in response to changes in the rate of cell growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pederson, S., Bloch, P. L., Reeh, S. & Neidhardt, F. C. Cell 14, 179–190 (1978).

    Article  Google Scholar 

  2. Sarmientos, P., Sylvester, J. E., Contente, S. & Cashel, M. Cell 32, 1337–1346 (1983).

    Article  CAS  PubMed  Google Scholar 

  3. Nomura, M., Yates, J. L., Dean, D. & Post, L. E. Proc. natn. Acad. Sci. U.S.A. 77, 7084–7088 (1980).

    Article  ADS  CAS  Google Scholar 

  4. Beck, E. & Bremer, E. Nucleic Acids Res. 8, 3011–3024 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Movva, N. R., Nakamura, K. & Inouye, M. J. molec. Biol. 143, 317–328 (1980).

    Article  CAS  PubMed  Google Scholar 

  6. Alton, N. K. & Vapnek, D. Nature 292, 864–869 (1979).

    Article  ADS  Google Scholar 

  7. Nakamura, K. & Inouye, M. Cell 18, 1109–1117 (1979).

    Article  CAS  PubMed  Google Scholar 

  8. Sutcliffe, J. G. Cold Spring Harb. Symp. quant. Biol. 43, 77–90 (1978).

    Article  Google Scholar 

  9. von Gabain, A., Belasco, J. G., Schottel, J. L., Chang, A. C. Y. & Cohen, S. N. Proc. natn. Acad. Sci. U.S.A. 80, 653–657 (1983).

    Article  ADS  CAS  Google Scholar 

  10. Lugtenberg, B., Peters, R., Bernheimer, H. & Berendsen, W. Molec. gen. Genet. 147, 251–262 (1976).

    Article  CAS  PubMed  Google Scholar 

  11. Ingraham, J. L., Maaloe, O. & Neidhardt, F. C. Growth of the Bacterial Cell (Sinauer Associates, Sunderland, Massachusetts, 1983).

    Google Scholar 

  12. Apirion, D. Processing of RNA (ed. Dunn, J. J.) 286–306 (Brookhaven National Laboratory, Upton, New York, 1974).

    Google Scholar 

  13. Bolivar, F. et al. Gene 2, 95–113 (1977).

    Article  CAS  PubMed  Google Scholar 

  14. Chang, A. C. Y. & Cohen, S. N. J. Bact. 134, 1141–1156 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Stueber, D. & Bujard, H. Proc. natn. Acad. Sci. U.S.A. 78, 167–171 (1981).

    Article  ADS  CAS  Google Scholar 

  16. Seed, B. Nucleic Acids Res. 10, 1799–1810 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee, N., Nakamura, K. & Inouye, M. J. Bact. 146, 861–866 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Fisher, J., Belasco, J. G., Khosla, S. & Knowles, J. R. Biochemistry 19, 2895–2901 (1980).

    Article  CAS  PubMed  Google Scholar 

  19. German, C. M., Moffat, L. F. & Howard, B. H. Molec. Cell. Biol. 2, 1044–1051 (1982).

    Article  Google Scholar 

  20. Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. J. biol. Chem. 193, 265–275 (1951).

    CAS  PubMed  Google Scholar 

  21. Stueber, D. & Bujard, H. EMBO J. 1, 1399–1404 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maniatis, T., Fritsch, E. F. & Sambrook, J. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

  23. Thomas, P. S. Meth. Enzym. 100, 255–266 (1983).

    Article  CAS  PubMed  Google Scholar 

  24. Berk, A. J. & Sharp, P. A. Cell 12, 721–723 (1977).

    Article  CAS  PubMed  Google Scholar 

  25. LeGrice, S. F. J., Matzura, H., Marcoli, R., Iida, S. & Bickle, T. A. J. Bact. 150, 312–318 (1982).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nilsson, G., Belasco, J., Cohen, S. et al. Growth-rate dependent regulation of mRNA stability in Escherichia coli. Nature 312, 75–77 (1984). https://doi.org/10.1038/312075a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/312075a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing