Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transposition without duplication of infecting bacteriophage Mu DNA

Abstract

Most models of DNA transposition invoke replication of the transposable element1, but it is not clear whether a ‘co-integrate’ is an obligatory intermediate in the pathway leading to the production of simple insertions during transposition. Such an intermediate can be accounted for only by a replicative transposition scheme. Bacteriophage Mu is a temperate phage that can either lysogenize or lyse its host2, and it encodes at least two modes of transposition as judged by the end-products generated by the process. During the lytic development of the integrated prophage, co-integrates are the predominant end-products3; transposition is coupled to replication during this phase4. A small number of simple insertions are also produced during the lytic growth3, but during transposition from the infecting phage into the host chromosome, simple insertions are the main end-products5. Conditions can be found where the choice between the two kinds of end-products depends on a delicate balance between the essential transposition functions encoded by Mu6. Experiments7,8 have suggested that the simple insertions which arise during transposition from the infecting phage may do so without Mu DNA replication. Here I demonstrate using an infecting phage with completely methylated DNA, a dam (DNA adenine methylase) host and a combination of restriction enzymes that can cut either fully methylated or unmethylated DNA but not hemi-methylated DNA, that transposition of the phage DNA into the host chromosome does not involve a duplication of its DNA. This result may also have significance for other transposons9 that do not appear to go through a co-integrate intermediate during transposition10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bukhari, A. I. Trends biochem. Sci. 6, 56–60 (1981).

    Article  CAS  Google Scholar 

  2. Bukhari, A. I. A. Rev. Genet. 10, 389–411 (1976).

    Article  CAS  Google Scholar 

  3. Chaconas, G., Harshey, R. M., Sarvetnick, N. & Bukhari, A. I. J. molec. Biol. 150, 341–359 (1981).

    Article  CAS  PubMed  Google Scholar 

  4. Ljungquist, E. & Bukhari, A. I. Proc. natn. Acad. Sci. U.S.A. 74, 3143–3147 (1977).

    Article  ADS  CAS  Google Scholar 

  5. Chaconas, G., Kennedy, D. L. & Evans, D. Virology 128, 48–59 (1983).

    Article  CAS  PubMed  Google Scholar 

  6. Harshey, R. M. Proc. natn. Acad. Sci. U.S.A. 80, 2012–2016 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Leibart, J. C., Ghelardini, P. & Paolozzi, L. Proc. natn. Acad. Sci. U.S.A. 79, 4362–4366 (1982).

    Article  ADS  Google Scholar 

  8. Akroyd, J. E. & Symonds, N. Nature 303, 84–86 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Berg, D. E. in DNA Insertion Elements, Plasmids and Episomes (eds Bukhari, A. I., Shapiro, J. A. & Adhya, S. L.) 205–212 (Cold Spring Harbor Laboratory, New York, 1977).

    Google Scholar 

  10. Kleckner, N. A. Rev. Genet. 15, 341–404 (1981).

    Article  CAS  Google Scholar 

  11. Marinus, M. G. & Morris, R. N. J. Bact. 114, 1143–1150 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Vovis, G. F. & Lacks, S. J. molec. Biol. 115, 525–538 (1977).

    Article  CAS  PubMed  Google Scholar 

  13. Chow, L. T., Kahmann, R. & Kamp, D. J. molec. Biol. 113, 591–609 (1977).

    Article  CAS  PubMed  Google Scholar 

  14. Brooks, J. E., Blumenthal, R. M. & Gingeras, T. R. Nucleic Acids Res. 11, 837–851 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Razzaki, T. & Bukhari, A. I. J. Bact. 122, 437–442 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Miller, H. I. & Freidman, D. I. Cell 20, 711–719 (1980).

    Article  CAS  PubMed  Google Scholar 

  17. Allet, B. Cell 16, 123–129 (1979).

    Article  CAS  PubMed  Google Scholar 

  18. Kahmann, R. & Kamp, D. Nature 280, 247–250 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Grindley, N. D. F. & Sherratt, D. J. Cold Spring Harb. Symp. quant. Biol. 43, 1257–1261 (1978).

    Article  Google Scholar 

  20. Harshey, R. M. & Bukhari, A. I. J. molec. Biol. 167, 427–441 (1983).

    Article  CAS  PubMed  Google Scholar 

  21. Gill, R., Heffron, F., Dougan, G. & Falkow, S. J. Bact. 136, 742–756 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Shapiro, J. A. Proc. natn. Acad. Sci. U.S.A. 76, 1933–1937 (1979).

    Article  ADS  CAS  Google Scholar 

  23. McClintock, B. Cold Spring Harb. Symp. quant. Biol. 16, 13–47 (1951).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harshey, R. Transposition without duplication of infecting bacteriophage Mu DNA. Nature 311, 580–581 (1984). https://doi.org/10.1038/311580a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/311580a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing