Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Monoclonal antibodies against carbohydrate differentiation antigens identify subsets of primary sensory neurones

Abstract

Dorsal root ganglion (DRG) neurones transmit cutaneous sensory information from the periphery to the spinal cord. Within the dorsal horn of the spinal cord, classes of sensory fibres that are activated by different cutaneous stimuli terminate in separate and highly restricted laminae1–3. Although the developmental events resulting in the laminar organization of sensory afferent terminals have not been defined, it is likely that interactions between surface molecules on DRG and dorsal horn neurones are involved in the generation of afferent synaptic connections. The identification of surface antigens that distinguish functional subclasses of DRG neurones would represent a first step in establishing the existence and nature of such molecules. We report here that monoclonal antibodies directed against carbohydrate differentiation antigens4,5 identify cytoplasmic and cell surface molecules expressed selectively by functional subsets of DRG neurones.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brown, A. G. Organization in the Spinal Cord (Springer, Berlin, 1981).

    Book  Google Scholar 

  2. Light, A. R. & Perl, E. R. J. comp. Neurol. 186, 133–150 (1979).

    Article  CAS  Google Scholar 

  3. Rethelyi, M. J. comp. Neurol. 172, 511–528 (1977).

    Article  CAS  Google Scholar 

  4. Solter, D. & Knowles, B. B. Curr. Top. dev. Biol. 13, 139–165 (1979).

    Article  Google Scholar 

  5. Feizi, T. Trends biochem. Sci. 6, 333–335 (1981).

    Article  CAS  Google Scholar 

  6. Shevinsky, L. H., Knowles, B. B., Damjanov, I. & Solter, D. Cell 30, 697–705 (1982).

    Article  CAS  Google Scholar 

  7. Kannagi, R. et al. J. biol. Chem. 258, 8934–8942 (1983).

    CAS  PubMed  Google Scholar 

  8. Kannagi, R. et al. EMBO. J. 2, 2355–2361 (1983).

    Article  CAS  Google Scholar 

  9. Hokfelt, T., Johansson, O., Ljungdahl, A., Lundberg, J. M. & Schultzberg, M. Nature 284, 515–530 (1980).

    Article  ADS  CAS  Google Scholar 

  10. Nagy, J. I. & Hunt, S. P. Neuroscience 7, 89–97 (1982).

    Article  CAS  Google Scholar 

  11. Dodd, J. et al. Cold Spring Harbor Symp. quant. Biol. 48, 685–695 (1983).

    Article  CAS  Google Scholar 

  12. McClung, J. R. & Castro, A.J. Expl Neurol 58, 145–148 (1978).

    Article  CAS  Google Scholar 

  13. Nagy, J. I. & Hunt, S. P. J. comp. Neurol. 218, 145–158 (1983).

    Article  CAS  Google Scholar 

  14. Brown, A. G., Rose, P. K. & Snow, P. J. J. Physiol., Lond. 272, 779–797 (1977).

    Article  CAS  Google Scholar 

  15. Brown, A. G., Fyffe, R. E. W. & Snow, P. J. J. Physiol., Lond. 307, 385–400 (1980).

    Article  CAS  Google Scholar 

  16. Raff, M. C. et al. Brain Res. 174, 283–308 (1979).

    Article  CAS  Google Scholar 

  17. Lawson, S., Caddy, K. W. T. & Biscoe, T. J. Cell. Tissue Res. 153, 399–413 (1974).

    Article  CAS  Google Scholar 

  18. Magnani, J. L. Biochem. Soc. Trans. 12, 543–545 (1984).

    Article  CAS  Google Scholar 

  19. Feizi, T. Biochem. Soc. Trans. 12, 545–549 (1984).

    Article  CAS  Google Scholar 

  20. Jessell, T. M. & Dodd, J. Phil. Trans. R. Soc. (in the press).

  21. Grabel, L. B., Singer, M. S., Rosen, S. D. & Martin, G. R. Cold Spring Harb. Conf. Cell Proliferation 10, 145–161 (1983).

    CAS  Google Scholar 

  22. Shur, B. D. Cold Spring Harb. Conf. Cell Proliferation 10, 185–195 (1983).

    CAS  Google Scholar 

  23. Bird, J. M. & Kimber, S. J. Devl Biol. 104, 449–460 (1984).

    Article  CAS  Google Scholar 

  24. Edelman, G. M. et al. Cold Spring Harb. Symp. quant. Biol. 48, 515–526 (1983).

    Article  CAS  Google Scholar 

  25. Rutishauser, U. Cold Spring Harb. Symp. quant. Biol. 48, 501–514 (1983).

    Article  CAS  Google Scholar 

  26. Yamamoto, M., Steinbusch, H. W. M. & Jessell, T. M. J. Cell Biol. 91, 142–154 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dodd, J., Solter, D. & Jessell, T. Monoclonal antibodies against carbohydrate differentiation antigens identify subsets of primary sensory neurones. Nature 311, 469–472 (1984). https://doi.org/10.1038/311469a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/311469a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing