Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Formation of the 3′ end of histone mRNA by post-transcriptional processing

Abstract

The specific 3′ termini of a number of eukaryotic mRNAs have been shown to be generated by the post-transcriptional processing of primary transcripts or pre-mRNAs1–4. The sequence AAUAAA, present in the 3′ region of nearly all eukaryotic mRNAs, appears to be involved in the cleavage and subsequent polyadenylation of the primary transcript5. An exception to this general rule is the case of the histone mRNAs, which lack the AAUAAA sequence and are not normally polyadenylated. Histone mRNAs do, however, contain a highly conserved 23 base pair sequence at their 3′ termini6, which is required for correct 3′ end formation7. The similarity between this conserved sequence, which can be drawn as a hairpin loop, and bacterial transcription terminators8 has led several investigators to suggest that the specific 3′ end of histone mRNA is formed by termination of transcription9,10. So far, however, experimental results have not been presented which make it possible to distinguish between a post-transcriptional processing or a transcription termination mechanism for the formation of histone mRNA 3′ termini. We have investigated this issue by synthesizing in vitro unprocessed histone pre-mRNAs that extend past the normal 3′ terminus. These in vitro synthesized pre-mRNAS were injected into frog oocyte nuclei to study their fate. The results demonstrate that correct 3′ ends of chicken histone H2B mRNAs can be formed by RNA processing of longer synthetic pre-mRNAs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ford, J. & Hsu, M. J. Virol. 28, 795–801 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Nevins, J. R. & Darnell, J. E. Cell 15, 1477–1493 (1978).

    Article  CAS  PubMed  Google Scholar 

  3. Hofer, E. & Darnell, J. E. Cell 23, 585–593 (1981).

    Article  CAS  PubMed  Google Scholar 

  4. Manley, J. L., Sharp, P. A. & Gefter, M. L. J. molec. Biol. 159, 581–589 (1982).

    Article  CAS  PubMed  Google Scholar 

  5. Fitzgerald, M. & Shenk, T. Cell 24, 251–260 (1981).

    Article  CAS  PubMed  Google Scholar 

  6. Hentschel, C. C. & Birnstiel, M. L. Cell 25, 301–313 (1981).

    Article  CAS  PubMed  Google Scholar 

  7. Birchmeier, C., Grosschedl, R. & Birnstiel, M. L. Cell 28, 739–745 (1982).

    Article  CAS  PubMed  Google Scholar 

  8. Pribnow, D. in Biological Regulation and Development Vol. 1 (ed. Goldberger, R. F.) 250–277 (Plenum, New York, 1979).

    Google Scholar 

  9. Busslinger, M., Portmann, R. & Birnstiel, M. L. Nucleic Acids Res. 6, 2997–3008 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stunnenberg, H. G. & Birnstiel, M. L. Proc. natn. Acad. Sci. U.S.A. 79, 6201–6204 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Probst, E., Kressman, A. & Birnstiel, M. L. J. molec. Biol. 135, 709–732 (1979).

    Article  CAS  PubMed  Google Scholar 

  12. Butler, E. & Chamberlin, M. J. biol. Chem. 257, 5772–5778 (1982).

    CAS  PubMed  Google Scholar 

  13. Green, M., Maniatis, T. & Melton, D. Cell 32, 681–694 (1983).

    Article  CAS  PubMed  Google Scholar 

  14. Harvey, R. P., Robins, A. J. & Wells, J. R. E. Nucleic Acids Res. 10, 7851–7863 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gurdon, J. & Melton, D. A. A. Rev. Genet. 15, 189–218.

  16. Hentschel, C., Irminger, J., Bucher, P. & Birnstiel, M. L. Nature 285, 147–151 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Seiler-Tuyns, A. & Birnstiel, M. L. J. molec. Biol. 151, 607–626 (1981).

    Article  CAS  PubMed  Google Scholar 

  18. Zernick, M., Heintz, N., Boime, I. & Roeder, R. G. Cell 22, 807–815 (1980).

    Article  Google Scholar 

  19. Turner, P. & Woodland, H. Nucleic Acids Res. 10, 3769–3780 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Melton, D., DeRobertis, E. & Cortese, R. Nature 284, 143–148 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Melton, D. & Cortese, R. Cell 18, 1165–1172 (1979).

    Article  CAS  PubMed  Google Scholar 

  22. Galli, G., Hofstetter, H., Stunnenberg, H. & Birnstiel, M. L. Cell 34, 823–828 (1983).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krieg, P., Melton, D. Formation of the 3′ end of histone mRNA by post-transcriptional processing. Nature 308, 203–206 (1984). https://doi.org/10.1038/308203a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/308203a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing