Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role of an upstream regulatory element in leucine repression of the Saccharomyces cerevisiae leu2 gene

Abstract

The expression of a number of eukaryotic genes has been shown to involve at least two sequences located upstream of the actual transcription unit1–7: one of these sequences, centred on a widely conserved TATAAT sequence, is thought to be involved in determining the precise site of initiation of transcription1,8; the other has a gene-specific sequence, can function at a variable distance upstream of the initiation site3,9, and is involved in the regulation of transcription3,4,7,10. By constructing β-galac-tosidase gene fusions, to facilitate measuring gene expression in vivo, we have now defined a cis-acting regulatory element of the Saccharomyces cerevisiae leu2 gene. This element is located within a 280 base pair (bp) fragment which occurs 125 bp upstream of the leu2 translation initiation codon and which contains a short G+C-rich palindromic sequence. A fragment of the Escherichia coli transposable element Tn9 which contains a similar palindromic sequence can functionally replace the natural leu2 regulatory element. Our results are contrary to previous speculations that the leu2 gene is regulated by an attenuation mechanism11,12.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Grosschedl, R. & Birnstiel, M. C. Proc. natn. Acad. Sci. U.S.A. 77, 7102–7106 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Grosschedl, R. & Birnstiel, M. C. Proc. natn. Acad. Sci. U.S.A. 79, 297–301 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Pelham, H. R. Cell 30, 517–528 (1982).

    Article  CAS  Google Scholar 

  4. Struhl, K. Nature 300, 284–287 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Moreau, P. et al. Nucleic Acids Res. 9, 6047–6068 (1981).

    Article  ADS  CAS  Google Scholar 

  6. Hen, R. et al. Proc. natn. Acad. Sci. U.S.A. 79, 7132–7136 (1982).

    Article  ADS  CAS  Google Scholar 

  7. Donahue, T. F., Daves, R. S., Lucchini, G. & Fink, G. R. Cell 32, 89–98 (1983).

    Article  CAS  Google Scholar 

  8. Breadhnach, R. & Chambon, P. A. Rev. Biochem. 50, 349–383 (1981).

    Article  Google Scholar 

  9. McKnight, S. L. Cell 31, 355–365 (1982).

    Article  CAS  Google Scholar 

  10. Beier, D. R. & Young, E. T. Nature 300, 724–728 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Yanofsky, C. Nature 302, 751–752 (1983).

    Article  ADS  CAS  Google Scholar 

  12. Andreadis, A., Hsu, Y. P., Kohlhaw, G. B. & Schimmez, P. Cell 31, 319–325 (1982).

    Article  CAS  Google Scholar 

  13. Satyanarayana, T. et al. J. Bact. 96, 2078–2079 (1968).

    Google Scholar 

  14. Casadaban, M. J. et al. Meth. Enzym. 100, 293–308 (1983).

    Article  CAS  Google Scholar 

  15. Martinez-Arias, A. & Casadaban, M. J. Molec. cell. Biol. 3, 580–586 (1983).

    Article  CAS  Google Scholar 

  16. Rose, M., Casadaban, M. J. & Botstein, D. Proc. natn. Acad. Sci. U.S.A. 78, 2460–2464 (1981).

    Article  ADS  CAS  Google Scholar 

  17. Guarante, L. & Ptashne, M. Proc. natn. Acad. Sci. U.S.A. 78, 2460–2464 (1981).

    Article  Google Scholar 

  18. Osley, M. A. & Hereford, L. Proc. natn. Acad. Sci. U.S.A. 79, 7689–7693 (1982).

    Article  ADS  CAS  Google Scholar 

  19. Hinnen, A. et al. Proc. natn. Acad. Sci. U.S.A. 75, 1929–1933 (1978).

    Article  ADS  CAS  Google Scholar 

  20. Hall, B. D. et al. Cell 29, 3–5 (1982).

    Article  CAS  Google Scholar 

  21. Guarante, L., Yocum, R. & Gifford, P. Proc. natn. Acad. Sci. U.S.A. 79, 7910–7914.

  22. Davidson, E. H., Jacobs, H. T. & Britten, R. Nature 301, 468–470 (1983).

    Article  ADS  CAS  Google Scholar 

  23. Shapira, S. K., Chou, J., Richaud, F. & Casadaban, M. J. Gene (in the press).

  24. Alton, N. K. & Vapnek, D. Nature 282, 864–869 (1979).

    Article  ADS  CAS  Google Scholar 

  25. Kohlhaw, G. in Biotechnology: Amino Acid Biosynthesis and Regulation Vol. 1 (eds Herrman, K. H. & Somerville, R. S.) (Addison-Wesley, London, in the press).

  26. Sherman, F., Fink, G. R. & 8 Lawrence, C. Methods in Yeast Genetics (Cold Spring Harbor Laboratory, New York, (1979).

    Google Scholar 

  27. Ratzkin, B. & Carbon, J. Proc. natn. Acad. Sci. U.S.A. 74, 487–491 (1977).

    Article  ADS  CAS  Google Scholar 

  28. Miller, J. Experiments in Molecular Genetics (Cold Spring Harbor Laboratory, New York, 1972).

  29. Maniatis, T., Fritsch, E. F. & Sambrook, J. Molecular Cloning (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez-Arias, A., Yost, H. & Casadaban, M. Role of an upstream regulatory element in leucine repression of the Saccharomyces cerevisiae leu2 gene. Nature 307, 740–742 (1984). https://doi.org/10.1038/307740b0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/307740b0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing