Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transcriptional activation independent of TFIIH kinase and the RNA polymerase II mediator in vivo

Abstract

The carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II becomes multiply phosphorylated by protein kinases during early steps in the gene transcription cycle both in vivo1 and in vitro2. In yeast, the major CTD kinase is a subunit of the general transcription factor TFIIH, and is encoded by an essential gene, KIN28 (ref. 3). Although the CTD and its phosphorylation are important for transcription4,5,6, in vitro studies7,8 have challenged whether CTD phosphorylation is an absolutely required step. The general importance of CTD phosphorylation by Kin28 for transcription in yeast has been suggested because, for all genes tested, transcription is inhibited at the non-permissive temperature in temperature-sensitive kin28 mutants9,10. However, using such a mutant and a copper-inducible targeted destruction method, we show here that transcription of certain genes can be highly induced even when cells lack Kin28. We also show that transcription of these Kin28-independent genes is independent of Srb4 and Srb6, critical components of the CTD-associated transcriptional mediator complex11. These results indicate that there are at least two distinct pathways for transcriptional activation: one is dependent on Kin28 and the mediator complex, and the other is not.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CUP1 gene activation is independent of TFIIH kinase, but dependent on TFIIH helicase activity.
Figure 2: The SSA4 gene is activated after depletion of Kin28.
Figure 3: Kin28-independent genes are also independent of mediator.

Similar content being viewed by others

References

  1. O'Brien, T., Hardin, S., Greenleaf, A. & Lis, J. T. Phosphorylation of RNA polymerase II C-terminal domain and transcriptional elongation. Nature 370, 75–77 (1994).

    Article  ADS  CAS  Google Scholar 

  2. Laybourn, P. J. & Dahmus, M. E. Phosphorylation of RNA polymerase IIA occurs subsequent to interaction with the promoter and before the initiation of transcription. J. Biol. Chem. 265, 13165–13173 (1990).

    CAS  Google Scholar 

  3. Feaver, W. J., Svejstrup, J. Q., Henry, N. L. & Kornberg, R. D. Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK. Cell 79, 1103–1109 (1994).

    Article  CAS  Google Scholar 

  4. Scafe, C. et al. RNA polymerase II C-terminal repeat influences response to transcriptional enhancer signals. Nature 347, 491–494 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Gerber, H.-P. et al. RNA polymerase II C-terminal domain required for enhancer-driven transcription. Nature 374, 660–662 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Akoulitchev, S., Makela, T. P., Weinberg, R. A. & Reinberg, D. Requirements for TFIIH kinase activity in transcription by RNA polymerase II. Nature 377, 557–560 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Serizawa, H., Conaway, J. W. & Conaway, R. C. Phosphorylation of C-terminal domain of RNA polymerase II is not required in basal transcription. Nature 363, 371–374 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Makela, T. P. et al. Akinase-deficient transcription factor TFIIH is functional in basal and activated transcription. Proc. Natl Acad. Sci. USA 92, 5174–5178 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Cismowski, M. J., Laff, G. M., Solomon, M. J. & Reed, S. I. KIN28 encodes a C-terminal domain kinase that controls mRNA transcription in Saccharomyces cerevisiae but lacks cyclin-dependent kinase-activating kinase (CAK) activity. Mol. Cell. Biol. 15, 2983–2992 (1995).

    Article  CAS  Google Scholar 

  10. Valay, J.-G. et al. The KIN28 gene is required both for RNA polymerase II mediated transcription and phosphorylation of the Rpb1p CTD. J. Mol. Biol. 249, 535–544 (1995).

    Article  CAS  Google Scholar 

  11. Thompson, C. M. & Young, R. A. General requirement for RNA polymerase II holoenzymes in vivo. Proc. Natl Acad. Sci. USA 92, 4587–4590 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Thiele, D. J. ACE1 regulates expression of the Saccharomyces cerevisiae metallothionein gene. Mol. Cell. Biol. 8, 2745–2752 (1988).

    Article  CAS  Google Scholar 

  13. Qiu, H. et al. The Saccharomyces cerevisiae DNA repair gene RAD25 is required for transcription by RNA polymerase II. Genes Dev. 7, 2161–2171 (1993).

    Article  CAS  Google Scholar 

  14. Giardina, C. & Lis, J. T. Dynamic protein-DNA architecture of a yeast heat shock promoter. Mol. Cell. Biol. 15, 2737–2744 (1995).

    Article  CAS  Google Scholar 

  15. Boorstein, W. R. & Craig, E. A. Structure and regulation of the SSA4 HSP70 gene of Saccharomyces cerevisiae. J. Biol. Chem. 265, 18912–18921 (1990).

    CAS  Google Scholar 

  16. Moqtaderi, Z. et al. TBP-associated factors are not generally required for transcriptional activation in yeast. Nature 383, 188–191 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Dubois, M.-F. et al. Heat-shock inactivation of the TFIIH-associated kinase and change in the phosphorylation sites of the C-terminal domain of RNA polymerase II. Nucleic Acids Res. 25, 694–700 (1997).

    Article  CAS  Google Scholar 

  18. Lee, J. M. & Greenleaf, A. L. CTD kinase large subunit is encoded by CTK1, a gene required for normal growth of Saccharomyces cerevisiae. Gene Expr. 1, 149–167 (1991).

    CAS  Google Scholar 

  19. Liao, S.-M. et al. Akinase-cyclin pair in the RNA polymerase II holoenzyme. Nature 374, 193–196 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Barberis, A. et al. Contact with a component of the polymerase II holoenzyme suffices for gene activation. Cell 81, 359–368 (1995).

    Article  CAS  Google Scholar 

  21. 1. Ptashne, M. & Gann, A. Transcriptional activation by recruitment. Nature 386, 569–577 (1997).

    Article  ADS  CAS  Google Scholar 

  22. Hengartner, C. J. et al. Association of an activator with an RNA polymerase II holoenzyme. Genes Dev. 9, 897–910 (1995).

    Article  CAS  Google Scholar 

  23. Gonzalez-Couto, E., Klages, N. & Strubin, M. Synergistic and promoter-selective activation of transcription by recruitment of transcription factors TFIID and TFIIB. Proc. Natl Acad. Sci. USA 94, 8036–8041 (1997).

    Article  ADS  CAS  Google Scholar 

  24. Thompson, C. M., Koleske, A. J., Chao, D. M. & Young, R. A. Amultisubunit complex associated with the RNA polymerase II CTD and TATA-binding protein in yeaast. Cell 73, 1361–1375 (1993).

    Article  CAS  Google Scholar 

  25. Kim, Y.-J. et al. Amultiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77, 599–608 (1994).

    Article  CAS  Google Scholar 

  26. Svejstrup, J. Q. et al. Evidence for a mediator cycle at the initiation of transcription. Proc. Natl Acad. Sci. USA 94, 6075–6078 (1997).

    Article  ADS  CAS  Google Scholar 

  27. Rougvie, A. E. & Lis, J. T. The RNA polymerase II molecule at the 5′ end of the uninduced hsp70 gene of D. melanogaster is transcriptionally engaged. Cell 54, 795–804 (1988).

    Article  CAS  Google Scholar 

  28. Hansen, S. K. et al. Transcription properties of a cell type-specific TATA-binding protein, TRF. Cell 91, 71–83 (1997).

    Article  CAS  Google Scholar 

  29. Shen, W.-C. & Green, M. R. Yeast TAFII145 functions as a core promoter selectivity factor, not a general coactivator. Cell 90, 615–624 (1997).

    Article  CAS  Google Scholar 

  30. Elion, E. A. & Warner, J. R. An RNA polymerase I enhancer in Saccharomyces cerevisiae. Mol. Cell. Biol. 6, 2089–2097 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Bensaude, G. Faye, M. Cismowski, S. Reed, A. Greenleaf, S. Prakash and R. Young for strains; M. Cismowski for pSF-KIN28 plasmid; Z. Moqtaderi and K. Struhl for strains and plasmids used for generating copper knockout strains; S. Walker and M. Green for sequences of S1 probes; D. Thiele for advice on CUP1 induction; C. Wang for generating the Kin28 copper knockout strain; J.Roberts and E. Alani for critically reading the manuscript; and members of the Lis lab for criticism and encouragement. This work was supported by an NIH grant to J.T.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John T. Lis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, Dk., Lis, J. Transcriptional activation independent of TFIIH kinase and the RNA polymerase II mediator in vivo. Nature 393, 389–392 (1998). https://doi.org/10.1038/30770

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/30770

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing