Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Field effects trigger post-anodal rebound excitation in vertebrate CNS

Abstract

Although both chemical and electrotonic synaptic interactions have often been implicated in normal and pathophysiological conditions where clusters of central neurones discharge in unison1–5, in many instances the mechanisms underlying synchrony in the vertebrate central nervous system remain obscure. Another form of cellular communication which can be invoked is that of field effects3, defined here as electrical interactions mediated across extracellular space. Studies of the goldfish Mauthner (M-) cell provided the first clear evidence for such interactions, which have now been shown to exist in various mammalian central structures6–10. A single impulse in the M-cell leads to the nearly simultaneous firing of 40 to 80 inter-neurones which feed inhibition back onto it11,12, by both direct synaptic excitation and a field effect, which is initially hyper-polarizing. On the basis of early observations on this system, it was suggested that field effects could induce or facilitate synchronized and even epileptic-like neuronal bursting13. We report here that the inhibitory interneurones exhibit a remarkably sensitive anodal break excitation triggered by a brief hyperpolarization comparable to the electrical inhibition mentioned above. This mechanism alone may be sufficient to recruit a second class of these interneurones14,15 , which are postsynaptic to eighth nerve afferents and do not receive chemical synaptic input from the collateral network. The rebound facilitation is distinguished from excitatory field effects which can also contribute to synchronization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Andersen, P. & Sears, T. A. J. Physiol. Lond. 173, 459–480 (1964).

    Article  CAS  Google Scholar 

  2. Bennett, M. V. L. in Synaptic Transmission and Neuronal Interaction (ed. Bennett, M. V. L.) 153–178 (Raven, New York, 1974).

    Google Scholar 

  3. Korn, H. and Faber, D. S. in The Neurosciences 4th Study Program (eds Schmitt, F. O. & Worden, F. G.) 333–358 (MIT Press, 1979).

    Google Scholar 

  4. Schwartzkroin, P. A. & Prince, D. A. Brain Res. 147, 117–130 (1978).

    Article  CAS  Google Scholar 

  5. Traub, R. D. & Wong, R. K. S. Science 216, 745–747 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Nelson, P. G. J. Neurophysiol. 29, 275–287 (1966).

    Article  CAS  Google Scholar 

  7. Korn, H. & Axelrad, H. Proc. natn. Acad. Sci. U.S.A. 77, 6244–6247 (1980).

    Article  ADS  CAS  Google Scholar 

  8. Jefferys, J. G. R. J. Physiol., Lond. 319, 143–152 (1981).

    Article  CAS  Google Scholar 

  9. Jefferys, J. G. R. & Haas, H. L. Nature 300, 448–450 (1982).

    Article  ADS  CAS  Google Scholar 

  10. Taylor, C. P. & Dudek, F. E. Science 218, 810–812 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Faber, D. S. & Korn, H. in Neurobiology of the Mauthner Cell (eds Faber, D. S. & Korn, H.) 47–131 (Raven, New York, 1978).

    Google Scholar 

  12. Furukawa, T. & Furshpan, E. J. J. Neurophysiol. 26, 140–176 (1963).

    Article  CAS  Google Scholar 

  13. Korn, H. and Faber, D. S. in Sensory Physiology and Behavior (eds Galun, R., Hillman, P., Parnas, I. & Werman, R.) 289–305 (Plenum, New York, 1975).

    Book  Google Scholar 

  14. Zottoli, S. J. & Faber, D. S. Neuroscience 5, 1278–1302 (1980).

    Article  Google Scholar 

  15. Triller, A. & Korn, H. J. comp. Neurol. 203, 131–155 (1981).

    Article  CAS  Google Scholar 

  16. Korn, H. & Faber, D. S. Science 194, 1166–1169 (1976).

    Article  ADS  CAS  Google Scholar 

  17. Faber, D. S. & Korn, H. J. Neurophysiol. 48, 654–678 (1982).

    Article  CAS  Google Scholar 

  18. Korn, H. & Faber, D. S. J. Neurophysiol. 38, 452–471 (1975).

    Article  CAS  Google Scholar 

  19. Ito, M. Jap. J. Physiol. 7, 297–323 (1957).

    Article  CAS  Google Scholar 

  20. Miyazaki, S., Takahashi, K., Tsuda, K. & Yoshii, M. J. Physiol., Lond. 238, 55–77 (1974).

    Article  CAS  Google Scholar 

  21. Fukami, Y. Jap. J. Physiol. 12, 279–292 (1962).

    Article  CAS  Google Scholar 

  22. Czeh, G., Kudo, N. & Kuno, M. J. Physiol., Lond. 270, 165–180 (1977).

    Article  CAS  Google Scholar 

  23. Gallego, R. & Eyzaguirre, C. J. Neurophysiol. 41, 1217–1232 (1978).

    Article  CAS  Google Scholar 

  24. Halliwell, J. V. & Adams, P. R. Brain Res. 250, 71–92 (1982).

    Article  CAS  Google Scholar 

  25. Brown, D. A. & Adams, P. R. Nature 283, 673–676 (1980).

    Article  ADS  CAS  Google Scholar 

  26. Stafstrom, C. E., Schwindt, P. C. & Crill, W. E. Brain Res. 236, 221–226 (1982).

    Article  CAS  Google Scholar 

  27. Sherrington, C. S. The Integrative Action of the Nervous System (Yale University Press, 1906).

    Google Scholar 

  28. Kuffler, S. A. & Eyzaguirre, C. J. gen. Physiol. 39, 155–184 (1955).

    Article  CAS  Google Scholar 

  29. Spencer, W. A. & Kandel, E. R. Expl. Neurol. 4, 149–161 (1961).

    Article  Google Scholar 

  30. Llinas, R. & Jahnsen, H. Nature 297, 406–408 (1982).

    Article  ADS  CAS  Google Scholar 

  31. Katz, B. & Schmitt, O. H. J. Physiol., Lond. 97, 471–488 (1940).

    Article  CAS  Google Scholar 

  32. Kocsis, J. D., Ruiz, J. A. & Cummins, K. L. Expl. Brain Res. 47, 151–153 (1982).

    Article  CAS  Google Scholar 

  33. Rasminsky, M. J. Physiol., Lond. 305, 151–169 (1980).

    Article  CAS  Google Scholar 

  34. Arvanitaki, A. J. Neurophysiol. 5, 89–108 (1942).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faber, D., Korn, H. Field effects trigger post-anodal rebound excitation in vertebrate CNS. Nature 305, 802–804 (1983). https://doi.org/10.1038/305802a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/305802a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing