Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage

Abstract

Toxic shock syndrome (TSS) is a complex of generalized symptoms caused by a local staphylococcal infection, and a circulating toxin is thought to be involved. Indeed, nearly 100% of TSS isolates produce an exoprotein, TSSE, that is thought to have an aetiological role on the basis of positive animal tests (refs 1,2 and F. Quimby, personal communication) and human serological data3. Although the precise role of TSSE in TSS remains unclear (E. Kass, personal communication), no other staphylococcal factor has been implicated. Our preliminary studies of the genetics of TSSE production failed to demonstrate plasmid or phage involvement or linkage with known chromosomal genes (ref. 4 and B.N.K. et al., unpublished data); however, Schutzer et al. have found that most TSS strains harbour prophages with common plating characteristics and suggest that the toxin(s) involved in TSS are transmitted by lysogenic conversion5. We show here that TSSE is not demonstrably transferred by lysogeny; moreover, we have cloned the gene and found that the cloned product is serologically and biologically indistinguishable from the native protein, and that the TSSE determinant is associated with a larger DNA segment that is absent or rearranged in TSSE strains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schlievert, P. M. J. infect. Dis. 147, 391–398 (1983).

    Article  CAS  Google Scholar 

  2. de Azevedo, J. C., Hartigan, P. J., de Saxe, M. J., Bailey, C. J. & Arbuthnott, J. P. J. infect. Dis. (submitted).

  3. Bergdoll, M. S., Crass, B. A., Reiser, R. F., Robbins, R. N. & Davis, J. P. Lancet i, 1017–1021 (1981).

    Article  Google Scholar 

  4. Kreiswirth, B. N., Novick, R. P., Schlievert, P. M. & Bergdoll, M. S. Ann. intern. Med. 6(2), 974–977 (1982).

    Article  Google Scholar 

  5. Schutzer, S. E., Fischetti, V. A. & Zabriskie, J. B. Science 220, 316–318 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Novick, R. Virology 33, 155–166 (1967).

    Article  CAS  Google Scholar 

  7. Schafler, S., Francois, W. & Ruby, C. L. Antimicrob. A. Chemother. 9, 600–613 (1976).

    Article  Google Scholar 

  8. Altemeier, W. A. et al. Ann. intern. Med. 6 (2), 978–981 (1982).

    Article  Google Scholar 

  9. Mallonee, D. H., Glatz, B. A. & Pattee, P. A. Appl. envir. Microbiol. 43, 397–402 (1982).

    CAS  Google Scholar 

  10. Novick, R. P. et al. Proc. nat. Acad. Sci. U.S.A. 76, 400–404 (1979).

    Article  ADS  CAS  Google Scholar 

  11. Thompson, N. E. & Pattee, P. A. J. Bact. 148, 294–300 (1981).

    CAS  PubMed  Google Scholar 

  12. Elek, S. D. & Levy, E. J. Path. Bact. 62, 541–554 (1950).

    Article  CAS  Google Scholar 

  13. Löfdahl, S., Guss, B., Uhlen, M., Philipson, L. & Lindberg, M. Proc. natn. Acad. Sci. U.S.A. 80, 697–701 (1983).

    Article  ADS  Google Scholar 

  14. Meyer, F. T., Mlawer, N. & So, M. Cell 30, 45–52 (1982).

    Article  CAS  Google Scholar 

  15. Tanaka, T. & Weisblum, B. J. Bact. 121, 354–362 (1975).

    CAS  PubMed  Google Scholar 

  16. Robbins, R., Gould, S. & Bergdoll, M. Appl. Microbiol. 28, 946–950 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Schlievert, P. M., Shands, K. N., Dan, B. B., Schmidt, G. P. & Nishimura, R. D. J. infect. Dis. 143, 509–516 (1981).

    Article  CAS  Google Scholar 

  18. Horinouchi, S. & Weisblum, B. J. Bact. 150, 804–814 (1982).

    CAS  PubMed  Google Scholar 

  19. Southern, E. M. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  Google Scholar 

  20. Guerry, P., LeBlanc, D. J. & Falkow, S. J. Bact. 116, 1064–1066 (1973).

    CAS  Google Scholar 

  21. Thuring, R. W. J., Sanders, J. P. M. & Borst, P. Analyt. Biochem. 66, 213–220.

  22. Shafer, W. M. & Iandolo, J. J. Infect. Immun. 25, 902–911 (1979).

    CAS  Google Scholar 

  23. Pattee, P. A. & Neveln, D. S. J. Bact. 124, 201–211 (1975).

    CAS  PubMed  Google Scholar 

  24. Maniatis, T., Jeffrey, A. & Kleid, D. G. Proc. natn. Acad. Sci. U.S.A. 72, 1184–1188 (1975).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kreiswirth, B., Löfdahl, S., Betley, M. et al. The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 305, 709–712 (1983). https://doi.org/10.1038/305709a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/305709a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing