Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Light-chain phosphorylation controls the conformation of vertebrate non-muscle and smooth muscle myosin molecules

Abstract

Phosphorylation of the 20,000-molecular weight (Mr) light chains of vertebrate non-muscle (thymus) and smooth muscle (gizzard) myosins regulates the assembly of these myosins into filaments in vitro1,2. At physiological ionic strength and pH, nonphosphorylated smooth muscle and non-muscle myosin filaments are disassembled by stoichiometric levels of MgATP, forming species having sedimentation coefficients of 11S (range 10–12S1,3,4; myosin monomers in high salt sediment at 6S). When the 20,000 (20K)-Mr light chains on these 11S myosin species are phosphorylated by the light-chain kinase/calmodulin–Ca2+ complex, the inhibitory effect of the light chains on filament formation is removed and the myosins reassemble into filaments which are stable in MgATP1,2,5,6. It was originally suggested that the 11S myosin species was a dimer1,3, previously suggested as a building block for smooth muscle and non-muscle myosin filaments7,8. It has since been shown, however, that 11S smooth muscle myosin is monomeric4,9 and has a folded conformation4,10 rather than the extended shape characteristic of monomeric myosin in high salt11,12. Here we show that 11S non-muscle myosin is also folded and that phosphorylation of the 20K-Mr light chains of both vertebrate non-muscle (thymus) and vertebrate smooth muscle (gizzard) myosins causes these folded 11S molecules to unfold into the conventional extended monomeric form, which is able to assemble into filaments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Suzuki, H., Onishi, H., Takahashi, K. & Watanabe, S. J. Biochem., Tokyo 84, 1529–1542 (1978).

    Article  CAS  Google Scholar 

  2. Scholey, J. M., Taylor, K. A. & Kendrick-Jones, J. Nature 287, 233–235 (1980).

    Article  ADS  CAS  Google Scholar 

  3. Kendrick-Jones, J., Tooth, P., Taylor, K. A. & Scholey, J. M. Cold Spring Harb. Symp quant. Biol. 46, 929–938 (1982).

    Article  Google Scholar 

  4. Trybus, K. M., Huiatt, T. W. & Lowey, S. Proc natn. Acad. Sci. USA 79, 6151–6155 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Scholey, J. M., Taylor, K. A. & Kendrick-Jones, J. Biochimie 63, 255–271 (1981).

    Article  CAS  Google Scholar 

  6. Scholey, J. M., Smith, R. C., Drenckhahn, D., Gröschel-Stewart, U. & Kendrick-Jones, J. J. biol. Chem. 257, 7737–7745 (1982).

    CAS  PubMed  Google Scholar 

  7. Craig, R. & Mergerman, J. J. Cell Biol. 75, 990–996 (1977).

    Article  CAS  Google Scholar 

  8. Hinssen, H., D'Haese, J., Small, J. V. & Sobieszek, A. J. ultrastruct. Res. 64, 282–302 (1978).

    Article  CAS  Google Scholar 

  9. Suzuki, H., Kamata, T., Onishi, H. & Watanabe, S. J. Biochem., Tokyo 91, 1699–1705 (1982).

    Article  CAS  Google Scholar 

  10. Onishi, H. & Wakabayashi, T. J. Biochem. Tokyo 92, 871–879 (1982).

    Article  CAS  Google Scholar 

  11. Elliot, A. & Offer, G. J. molec. Biol. 123, 505–519 (1978).

    Article  Google Scholar 

  12. Lowey, S., Slayter, H. S., Weeds, A. G. & Baker, H. J. molec. Biol. 42, 1–29 (1969).

    Article  CAS  Google Scholar 

  13. Flicker, P., Wallimann, T. & Vilbert, P. Biophys. J. 33, 279a (1981).

    Google Scholar 

  14. Vibert, P. & Craig, R. J. molec. Biol. 157, 299–319 (1982).

    Article  CAS  Google Scholar 

  15. Kendrick-Jones, J., Jakes, R., Tooth, P., Craig, R. & Scholey, J. M. in Basic Biology of Muscles: A Comparative Approach (eds Twarog, B. M., Levine, R. J. C. & Dewey, M. M.) 255–272 (Raven, New York, 1982),

    Google Scholar 

  16. McLachlan, A. D. & Kam, J. Nature 299, 226–231 (1982).

    Article  ADS  CAS  Google Scholar 

  17. Adelstein, R. S. & Eisenberg, E. A. Rev. Biochem. 49, 921–956 (1980).

    Article  CAS  Google Scholar 

  18. Drenckhahn, D. & Gröschel-Stewart, U. J. Cell Biol. 86, 475–482 (1980).

    Article  CAS  Google Scholar 

  19. Herman, I. M. & Pollard, T. D. J. Cell Biol. 88, 346–351 (1981).

    Article  CAS  Google Scholar 

  20. Somlyo, A. V., Butler, T. M., Bond, M. & Somlyo, A. P. Nature 294, 567–569 (1981).

    Article  ADS  CAS  Google Scholar 

  21. Shotton, D. M., Burke, B. E. & Branton, D. J. molec. Biol. 131, 303–329 (1979).

    Article  CAS  Google Scholar 

  22. Tyler, J. M. & Branton, D. J. ultrastruct. Res. 71, 95–102 (1980).

    Article  CAS  Google Scholar 

  23. Williams, R. C. Expl Cell Res. 4, 188–201 (1953).

    Article  Google Scholar 

  24. Perrie, N. T. & Perry, S. V. Biochem. J. 119, 31–38 (1970).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craig, R., Smith, R. & Kendrick-Jones, J. Light-chain phosphorylation controls the conformation of vertebrate non-muscle and smooth muscle myosin molecules. Nature 302, 436–439 (1983). https://doi.org/10.1038/302436a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/302436a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing