Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Abnormal visual input leads to development of abnormal axon trajectories in frogs

Abstract

Throughout the normal vertebrate brain, visual maps from the left and right eyes overlap and are in register with one another. Visual input has a major role in the development of the pathways which mediate these binocular projections1–3. A dramatic example of the developmental role of sensory input occurs in the isthmo-tectal projection, which is part of the polysynaptic relay from the eye to the ipsilateral tectum of the frog, Xenopus laevis4–8. If one eye is rotated when the animal is still a tadpole, the isthmic axons respond by changing the topography of their terminations in the tectum; for example, a given isthmo-tectal axon which normally would connect with medial tectum can be induced to terminate in lateral tectum. Such rearrangements bring the ipsilateral visual map into register with the contralateral retinotectal map, even though one eye has been rotated. Indirect evidence8 has suggested that after early eye rotation, isthmo-tectal axons do not grow directly to their new tectal targets but instead reach those targets by routes which pass through their normal termination zones. Here I have used anterograde horseradish peroxidase labelling of isthmo-tectal fibres to show the trajectories of such axons and to compare them with the routes which axons take when allowed to develop normally. Tracings of individual axons in flat-mounted, unsectioned tecta show that most axons in normal Xenopus follow fairly straight paths in the tectum. In contrast, early eye rotation causes many isthmo-tectal axons to follow crooked, circuitous pathways before they terminate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. LeVay, S., Wiesel, T. N. & Hubel, D. H. J. comp. Neurol. 191, 1–51 (1980).

    Article  CAS  Google Scholar 

  2. Shatz, C. J. & LeVay, S. Science 204, 328–330 (1979).

    Article  ADS  CAS  Google Scholar 

  3. Innocenti, G. M. & Frost, D. O. Nature 280, 231–233 (1979).

    Article  ADS  CAS  Google Scholar 

  4. Gruberg, E. R. & Udin, S. B. J. comp. Neurol. 179, 487–500 (1978).

    Article  CAS  Google Scholar 

  5. Grobstein, P., Comer, C., Hollyday, M. & Archer, S. M. Brain Res. 156, 117–123 (1978).

    Article  CAS  Google Scholar 

  6. Glasser, S. & Ingle, D. Brain Res. 159, 214–218 (1978).

    Article  CAS  Google Scholar 

  7. Keating, M. J. Br. med. Bull. 30, 145–151 (1974).

    Article  CAS  Google Scholar 

  8. Udin, S. B. & Keating, M. J. J. comp. Neurol. 203, 575–594 (1981).

    Article  CAS  Google Scholar 

  9. Nieuwkoop, P. D. & Faber, J. A Normal Table of Xenopus (Daudin) 2nd edn (North-Holland, Amsterdam, 1967).

    Google Scholar 

  10. Tay, D. & Straznicky, C. Neurosci. Lett. 16, 313–318 (1980).

    Article  CAS  Google Scholar 

  11. Udin, S. B. Soc. Neurosci. Abstr. 7, 406 (1981).

    Google Scholar 

  12. Beazley, L., Keating, M. J. & Gaze, R. M. Vision Res. 12, 407–410 (1972).

    Article  CAS  Google Scholar 

  13. Adams, J. C. J. Histochem. Cytochem. 29, 775 (1981).

    Article  CAS  Google Scholar 

  14. Keating, M. J. & Feldman, J. Proc. R. Soc. B191, 467–474 (1975).

    ADS  CAS  Google Scholar 

  15. Runyon, R. P. & Haber, A. Fundamentals of Behavioral Statistics (Addison-Wesley, Reading, Massachusetts, 1967).

    Google Scholar 

  16. Horder, T. J. Brain Res. 72, 41–52 (1974).

    Article  CAS  Google Scholar 

  17. Udin, S. B. Expl Neurol. 58, 455–470 (1978).

    Article  CAS  Google Scholar 

  18. Meyer, R. L. J. comp. Neurol. 189, 273–289 (1980).

    Article  CAS  Google Scholar 

  19. Fujisawa, H., Tani, N., Watanabe, K. & Ibata, Y. Devl Biol. 90, 43–57 (1982).

    Article  CAS  Google Scholar 

  20. Frank, E., Harris, W. A. & Kennedy, B. M. J. Neurosci. Meth. 2, 183–189 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Udin, S. Abnormal visual input leads to development of abnormal axon trajectories in frogs. Nature 301, 336–338 (1983). https://doi.org/10.1038/301336a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/301336a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing