Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interactive effects of metals and humus on marine phytoplankton carbon uptake

Abstract

Although certain trace metals are essential micronutrients required for growth1,2, elevated concentrations of some of the same metals exert deleterious effects on marine phytoplankton populations3–5. Laboratory studies have indicated that metal toxicity depends on metal ion concentrations rather than total dissolved metals6–10. Although it is believed that bioavailability is largely controlled by the degree to which dissolved trace metals are organically chelated11, it has not been definitively established which organic compounds chelate trace metals in natural seawater12. In an effort to define ecologically significant interactions between dissolved trace metals and naturally occurring organic matter13 we selected marine humus (humic and fulvic acids) as being likely to interact with trace metals in seawater. These compounds, derived from plant and animal sources, are being widely studied for their role in the transport and toxicity of metal ions in terrestrial, aquatic, and marine ecosystems14and are known to comprise up to half of the total dissolved organic matter in seawater15. Guided by a recent hypothesis explaining the structure of marine humus and its geochemical diagenesis15 a laboratory synthesis of marine fulvic acid was accomplished16. The resulting material was physically, spectroscopically and chemically identical to one or more natural marine fulvic acids isolated from the Gulf of Mexico. We confirm here that isolated natural marine fulvics and marine fulvics synthesized in the laboratory affect the bioavailability of trace metals to marine phytoplankton.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Provasoli, L., McLauglin, J. J. A. & Droop, M. R. Arch. Mikrobiol. 25, 392–426 (1957).

    Article  CAS  Google Scholar 

  2. Guillard, R. L. & Ryther, J. H. Can. J. Microbiol. 8, 229–239 (1962).

    Article  CAS  Google Scholar 

  3. Thomas, W. H., Seibert, D. L. R. & Takahashi, M. Mar. Sci. Commun. 3, 331–354 (1979).

    Google Scholar 

  4. Thomas, W. H., Hollebaugh, J. T., Seibert, D. L. R. & Wallace, G. T. Jr Mar. Ecol. Prog. Ser. 2, 213–220 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Davies, A. G. & Sleep, J. A. Nature 277, 292–293 (1979).

    Article  ADS  CAS  Google Scholar 

  6. Sunda, W. G. & Guillard, R. L. J. mar. Res. 34, 511–529 (1976).

    CAS  Google Scholar 

  7. Andersen, D. M. & Morel, F. M. M. Limnol. Oceanogr. 23, 283–295 (1978).

    Article  ADS  Google Scholar 

  8. Jackson, G. A. & Morgan, J. J. Limnol. Oceanogr. 23, 268–282 (1978).

    Article  ADS  CAS  Google Scholar 

  9. Morel, N. M. L., Reuter, J. G. & Morel, F. M. M. J. Phys. 14, 43–48 (1978).

    CAS  Google Scholar 

  10. Gavis, J., Guillard, R. L. & Woodward, B. L. J. mar. Res. 39, 315–333 (1981).

    CAS  Google Scholar 

  11. Sunda, W. G. & Ferguson, R. L. in Proc. NATO/ARI Symp. on Trace Metals in Seawater (ed. Wong, C. S.) (Plenum, New York, in the press).

  12. Huntsman, S. A. & Sunda, W. G. in The Physiological Ecology of Phytoplankton (ed. Morris, I.), 285–328 (University of California Press, 1980).

    Google Scholar 

  13. Atwood, D. K. EOS 63, 70 (1982).

    Google Scholar 

  14. Saar, R. A. & Weber, J. H. Envir. Sci. Technol. 16, 510A–517A (1982).

    Article  ADS  CAS  Google Scholar 

  15. Harvey, G. R., Boran, D. A., Chesal, L. A. & Tokar, J. M. Mar. Chem. 12, 1–14 (1983).

    Article  Google Scholar 

  16. Harvey, G. R. & Boran, D. A. EOS 63, 62 (1982).

    Google Scholar 

  17. Steeman-Nielson, E. J. Cons. Int. Explor. Mar. 18, 117–140 (1952).

    Article  Google Scholar 

  18. Strickland, J. D. H. Fish. Res. Board. Canada Bull No. 167 (1972).

  19. Fitzwater, S. E., Knauer, G. A. & Martin, J. A. Limnol. Oceanogr. 27, 544–551 (1982).

    Article  ADS  CAS  Google Scholar 

  20. Tokar, J. M., Harvey, G. R. & Chesal, L. A. Deep-Sea Res. 28, 1395–1399 (1981).

    Article  ADS  Google Scholar 

  21. Huizenga, D. L. & Kester, D. R. Limnol. Oceanogr. 24, 145–157 (1979).

    Article  ADS  CAS  Google Scholar 

  22. Wood, A. M. in Proc. 21st Hanford Life Sciences Symp. Biological Availability of Trace Metals (Elsevier, Amsterdam, in the press).

  23. Brand, L. E., Sunda, W. G. & Guillard, R. L. EOS 63, 112 (1982).

    Google Scholar 

  24. Sunda, W. G. & Huntsman, S. EOS 63, 113 (1982).

    Google Scholar 

  25. Ortner, P. B., Piotrowicz, S. R., Chesal, L., Berberian, G. & Ferguson, R. L. EOS 63, 88 (1982).

    Google Scholar 

  26. Fisher, N. S. & Frood, D. Mar. Biol. 59, 85–93 (1980).

    Article  CAS  Google Scholar 

  27. Fisher, N. S., Jones, G. J. & Nelson, D. M. Mar. Chem. (in the press).

  28. Sunda, W. G., Barber, R. T. & Huntsman, S. A. J. mar. Res. 39, 567–586 (1981).

    CAS  Google Scholar 

  29. Piotrowicz, S. R., Springer-Young, M., Puig, J. A. & Spencer, M. J. Analyt. Chem. 54, 1367–1371 (1982).

    Article  CAS  Google Scholar 

  30. Piotrowicz, S. R., Harvey, G. R., Springer-Young, M., Courant, R. A. & Boran, D. A. in Proc. NATO/ARI Symp. on Trace Metals in Seawater (ed. Wong, C. S.) (Plenum, New York, in the press).

  31. Sunda, W. G., Huntsman, S. A. & Harvey, G. R. Nature (in the press).

  32. Gachter, R., Lum-Shue-Chan, K. & Chan, Y. K. Schweiz. Z. Hydrol. 35, 252–261 (1973).

    CAS  Google Scholar 

  33. Srna, R. F., Garrett, K. S., Miller, S. M. & Thum, A. B. Envir. Sci. Technol. 14, 1482–1486 (1980).

    Article  ADS  CAS  Google Scholar 

  34. Prakash, A. Fertility of the Sea (ed. Costlow, J. D. Jr) 351–358 (Gordon & Breach, London, 1971).

    Google Scholar 

  35. Fisher, N. S. & Fabris, J. G. Mar. Chem. 11, 245–255 (1982).

    Article  CAS  Google Scholar 

  36. Gnassia-Barelli, M., Romeo, M., Laumond, F. & Pesando, D. Mar. Biol. 47, 15–19 (1978).

    Article  CAS  Google Scholar 

  37. Spencer, M. J. & Carpenter, J. EOS 63, 112 (1982).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortner, P., Kreader, C. & Harvey, G. Interactive effects of metals and humus on marine phytoplankton carbon uptake. Nature 301, 57–59 (1983). https://doi.org/10.1038/301057a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/301057a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing