Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Design of a 13% efficient n-GaAs1−xPx semiconductor–liquid junction solar cell

Abstract

We report here the design of the most efficient non-aqueous semiconductor–liquid junction solar cell studied to date. Our approach involves the use of ternary semiconductor electrodes made from solid solutions of a large hand gap material, GaP, and a small band gap material, GaAs. We demonstrate here that photoanodes consisting of such materials are capable of simultaneously yielding high open circuit voltages and favourable wavelength response to the solar spectrum. A few n-type semiconductor–liquid junction solar cells in aqueous solutions have been reported to yield high (>10%) solar-to-electrical conversion efficiencies1–3. However, for most materials, rapid photoanodic corrosion dominates the interfacial photochemistry4–8. Non-aqueous solvent systems can suppress electrode decay due to corrosion4,7,8; but modest (<6%) conversion efficiencies have been observed for all photoanodes studied in solar irradiation conditions9–13. The photoanodes used here yield over 13% solar-to-electrical conversion efficiencies, or more than double the efficiency of any other non-aqueous semiconductor–liquid junction solar cell previously reported.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Parkinson, B. A., Heller, A. & Miller, B. J. electrochem. Soc. 126, 954–960 (1979).

    Article  ADS  CAS  Google Scholar 

  2. Noufi, R. & Tench, D. J. electrochem. Soc. 127, 188–190 (1980).

    Article  CAS  Google Scholar 

  3. Kline, G., Kam, K., Canfield, D. & Parkinson, B. A. Sol. Energy Mater. 4, 301–308 (1981).

    Article  ADS  CAS  Google Scholar 

  4. Wrighton, M. S. Acct. chem. Res. 12, 303–310 (1979).

    Article  CAS  Google Scholar 

  5. Bard, A. J. & Wrighton, M. S. J. electrochem. Soc. 124, 1706–1710 (1977).

    Article  CAS  Google Scholar 

  6. Gerischer, H. J. electroanalyt. Chem. 82, 133–143 (1977).

    Article  CAS  Google Scholar 

  7. Legg, K. D., Ellis, A. B., Bolts, J. M. & Wrighton, M. S. Proc. natn. Acad. Sci. U.S.A. 74, 4116–4120 (1977).

    Article  ADS  CAS  Google Scholar 

  8. Kohl, P. A. & Bard, A. J. J. electrochem. Soc. 126, 59–67 (1979).

    Article  CAS  Google Scholar 

  9. Langmuir, M. E., Parker, M. A. & Rauh, R. D. J. electrochem. Soc. 192, 1705–1710 (1982).

    Article  Google Scholar 

  10. Baglio, J. A. et al. J. electrochem. Soc. 129, 1461–1472 (1982).

    Article  CAS  Google Scholar 

  11. Nagasubramanian, G., Bard, A. J. J. electrochem. Soc. 128, 1055–1060 (1981).

    Article  CAS  Google Scholar 

  12. Noufi, R., Tench, D. & Warren, L. F. J. electrochem. Soc. 128, 2363–2366 (1981).

    Article  CAS  Google Scholar 

  13. Fornarini, L., Stirpe, F. & Serosati, B. J. electrochem. Soc. 129, 1155–1156 (1982).

    Article  ADS  CAS  Google Scholar 

  14. Williams, C. K., Glisson, T. H., Hauser, J. R. & Littlejohn, M. A. J. electron. Mater. 7, 639–647 (1978).

    Article  ADS  CAS  Google Scholar 

  15. Kohl, P. A. & Bard, A. J. J. electrochem. Soc. 126, 603–608 (1979).

    Article  CAS  Google Scholar 

  16. Bolts, J. M. & Wrighton, M. S. J. Am. chem. Soc. 101, 6179–6184 (1979).

    Article  CAS  Google Scholar 

  17. Kohl, P. A. & Bard, A. J. J. Am. chem. Soc. 99, 7531–7539 (1977).

    Article  CAS  Google Scholar 

  18. Seaman, C. H., Anspaugh, B. E., Downing, R. G. & Esrey, R. S. 14th IEEE Photo. Spec. Conf. 494–499 (1980).

  19. Bolton, J. R. Science 202, 705–711 (1978).

    Article  ADS  CAS  Google Scholar 

  20. Tanaka, S., Bruce, J. A. & Wrighton, M. S. J. phys. Chem. 85, 3778–3787 (1981).

    Article  CAS  Google Scholar 

  21. Kautek, W. & Gerischer, H. Ber. Bunsenges Phys. Chem. 84, 645–653 (1980).

    Article  CAS  Google Scholar 

  22. Bard, A. J., Bocarsly, A. B., Fan, F.-R. R., Walton, E. G. & Wrighton, M. S. J. Am. chem. Soc. 102, 3671–3677 (1980).

    Article  CAS  Google Scholar 

  23. Heller, A., Parkinson, B. A. & Miller, B. Appl. phys. Lett. 33, 521–523 (1978).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gronet, C., Lewis, N. Design of a 13% efficient n-GaAs1−xPx semiconductor–liquid junction solar cell. Nature 300, 733–735 (1982). https://doi.org/10.1038/300733a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/300733a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing