Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chromaffin granule membrane–F-actin interactions are calcium sensitive

Abstract

Exocytosis of neurotransmitters, hormones and other secretory products from many cell types is initiated by a rise in the intracellular free calcium ion concentration1. By analogy with excitation–contraction coupling in muscle2, calcium-triggered acto–myosin interactions have been postulated to push or pull the secretory granule to the plasma membrane1,3–6. Indeed, there have been several reports of actin interacting with membranes of secretory vesicles from the adrenal medulla (chromaffin granules)7–12. Using sedimentation techniques and a novel application13,14 of falling ball viscometry15,16 to measure actin binding to membranes, we show here that purified chromaffin granule membranes bind and cause large increases in the viscosity of F-actin. The actin-binding activity of the membranes is trypsin sensitive and thermolabile and interactions between membranes and actin are reversibly inhibited by raising the free calcium ion concentration, [Ca2+]free, above 10−7 M. We propose that regulation of actin–chromaffin granule membrane interactions may be critical for organelle movement to the plasma membrane during calcium-mediated exocytosis in the chromaffin cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Douglas, W. W. Biochem. Soc. Symp. 39, 1–28 (1974).

    CAS  Google Scholar 

  2. Ebashi, S. A. Rev. Physiol. 38, 293–313 (1976).

    Article  CAS  Google Scholar 

  3. Allison, A. C. Ciba Fdn Symp. 14, 109–148 (1973).

    CAS  Google Scholar 

  4. Durham, A. C. H. Cell 2, 123–136 (1974).

    Article  CAS  PubMed  Google Scholar 

  5. Trifaro, J. M. Neuroscience 3, 1–24 (1978).

    Article  CAS  Google Scholar 

  6. Malaisse, W. J. & Orci, L. Meth. Achieve. exp. Path. 9, 112–136 (1979).

    CAS  Google Scholar 

  7. Gabbiani, G., DaPrada, M., Richards, G. & Pletscher, A. Proc. Soc. exp. Biol. Med. 152, 135–138 (1976).

    Article  Google Scholar 

  8. Burridge, K. & Phillips, J. H. Nature 254, 526–529 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Meyer, D. I. & Burger, M. M. FEBS Lett. 101, 129–133 (1979).

    Article  CAS  PubMed  Google Scholar 

  10. Aunis, D., Guerold, B., Bader, M. F. & Cieselski-Treska, J. Neuroscience 5, 2261–2277 (1980).

    Article  CAS  PubMed  Google Scholar 

  11. Wilkins, J. A. & Lin, S. Biochim. biophys. Acta 642, 55–66 (1981).

    Article  CAS  PubMed  Google Scholar 

  12. Jockusch, B. M. et al. Nature 270, 628–629 (1977).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Fowler, V. M., Luna, E. J., Hargreaves, W. R., Taylor, D. L. & Branton, D. J. Cell Biol. 88, 388–395 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Luna, E. J., Fowler, V. M., Swanson, J., Branton, D. & Taylor, D. L. J. Cell Biol. 88, 396–409 (1981).

    Article  CAS  PubMed  Google Scholar 

  15. MacLean-Fletcher, S. D. & Pollard, T. D. J. Cell Biol. 85, 414–428 (1980).

    Article  CAS  PubMed  Google Scholar 

  16. Fowler, V. M. & Taylor, D. L. J. Cell Biol. 85, 361–376 (1980).

    Article  CAS  PubMed  Google Scholar 

  17. Fowler, V. M. & Pollard, H. B. J. supramolec. Struct. Cell Biochem. (in the press).

  18. Taylor, D. L. & Condeelis, J. C. Int. Rev. Cytol. 56, 57–144 (1979).

    Article  CAS  PubMed  Google Scholar 

  19. Ishiura, M. & Okada, M. J. Cell Biol. 80, 465–480 (1979).

    Article  CAS  PubMed  Google Scholar 

  20. Yin, H. L., Zaner, K. S. & Stossel, T. P. J. biol. Chem. 255, 9494–9500 (1980).

    CAS  PubMed  Google Scholar 

  21. Mimura, N. & Asano, A. Nature 282, 44–48 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Baker, P. F. & Knight, D. E. Nature 276, 620–622 (1978).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Weiss, R. & Levin, R. M. Adv. Cyclic Nucleotide Res. 9, 285–303 (1978).

    CAS  PubMed  Google Scholar 

  24. MacLean-Fletcher, S. & Pollard, T. D. Biochem. biophys. Res. Commun. 96, 18–27 (1980).

    Article  CAS  PubMed  Google Scholar 

  25. Kryvir, H., Flatmark, T. & Terland, O. Eur. J. Cell Biol. 20, 76–82 (1979).

    Google Scholar 

  26. Pollard, H. B., Zinder, O. & Huffman, P. G. Cell Biology 1 (eds Altman, P. L. & Katz, D. D.) 358–362 (Fedn Am. Soc. exp. Biol. Med., 1976).

    Google Scholar 

  27. Gordon, D. J., Boyer, J. L. & Korn, E. D. J. biol. Chem. 252, 8300–8309 (1977).

    CAS  PubMed  Google Scholar 

  28. Stossel, T. P. A. Rev. Med. 29, 427–457 (1978).

    Article  CAS  Google Scholar 

  29. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Bartlett, S. F. & Smith, A. D. Meth. Enzym. 31, 379–389 (1974).

  31. Apps, D. K. & Schatz, G. Eur. J. Biochem. 100, 411–419 (1979).

    Article  CAS  PubMed  Google Scholar 

  32. Terland, O. & Flatmark, T. Biochim. biophys. Acta 597, 318–330 (1980).

    Article  CAS  PubMed  Google Scholar 

  33. Zinder, O., Hoffman, P. G., Bonner, W. M. & Pollard, H. B. Cell Tissue Res. 188, 153–170 (1978).

    Article  CAS  PubMed  Google Scholar 

  34. Spudich, J. A. & Watt, S. J. biol. Chem. 246, 4866–4871 (1971).

    CAS  PubMed  Google Scholar 

  35. Caldwell, P. C. Calcium and Cellular Function (ed. Cuthbert, A. W.) 10–16 (Macmillan, London, 1970).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fowler, V., Pollard, H. Chromaffin granule membrane–F-actin interactions are calcium sensitive. Nature 295, 336–339 (1982). https://doi.org/10.1038/295336a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/295336a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing