Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Low intracellular pH and chemical agents slow inactivation gating in sodium channels of muscle

Abstract

Excitation of nerve or muscle requires an orderly opening and closing of molecular pores, the ionic channels, in the plasma membrane. During the action potential, Na channels are opened (activated) by the advancing wave of depolarisation, contributing a pulse of inward sodium current, and then are closed again (inactivated) by the continued depolarisation1. As one approach both to obtaining molecular information on the Na channel and towards further defining the recently discovered kinetic interactions of the inactivation and activation gating steps2–4, we have surveyed here the effects of chemical agents reported to slow or prevent Na channel inactivation. We find that many of the agents studied by others5–14 on invertebrate giant axons or vertebrate nerve act on our frog skeletal muscle preparation. In addition, we have discovered that simply lowering the intracellular pH nearly eliminates inactivation. The activation mechanism seems to resist modification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hodgkin, A. L. & Huxley, A. F. J. Physiol., Lond. 116, 497–506 (1952).

    Article  CAS  Google Scholar 

  2. Bezanilla, F. & Armstrong, C. M. J. gen. Physiol. 70, 549–566 (1977).

    Article  CAS  Google Scholar 

  3. Armstrong, C. M. & Bezanilla, F. J. gen. Physiol. 70, 567–590 (1977).

    Article  CAS  Google Scholar 

  4. Nonner, W. J. Physiol., Lond. 299 (in the press).

  5. Stämpfli, R. Experimentia 30, 505–508 (1974).

    Article  Google Scholar 

  6. Conti, F., Hille, B., Neumcke, B., Nonner, W. & Stämpfli, R. J. Physiol., Lond. 262, 729–742 (1976).

    Article  CAS  Google Scholar 

  7. Oxford, G. S., Wu, C. H. & Narahashi, T. J. gen. Physiol. 71, 227–247 (1978).

    Article  CAS  Google Scholar 

  8. Shrager, P. G., Strickholm, A. & Macey, R. I. J. cell. Physiol. 74, 91–99 (1969).

    Article  CAS  Google Scholar 

  9. Keana, J. F. W. & Stämpfli, R. Biochim. biophys. Acta 373, 18–33 (1974).

    Article  CAS  Google Scholar 

  10. Eaton, D. C. & Brodwick, M. S. Biophys. J. 25, 305a (1979).

    Google Scholar 

  11. Eaton, D. C., Oxford, G. S. & Rudy, B. Nature 271, 473–475 (1978).

    Article  ADS  CAS  Google Scholar 

  12. Shrager, P. G., Macey, R. I. & Strickholm, A. J. cell. Physiol. 74, 77–90 (1969).

    Article  CAS  Google Scholar 

  13. Oxford, G. S. & Pooler, J. P. J. gen. Physiol. 66, 765–779 (1975).

    Article  CAS  Google Scholar 

  14. Brodwick, M. S. & Eaton, D. C. Science 200, 1494–1496 (1978).

    Article  ADS  CAS  Google Scholar 

  15. Hille, B. & Campbell, D. T. J. gen. Physiol. 67, 265–293 (1976).

    Article  CAS  Google Scholar 

  16. Steinacker, A. Nature 278, 358–360 (1979).

    Article  ADS  CAS  Google Scholar 

  17. Campbell, D. T. & Hille, B. J. gen. Physiol. 67, 309–323 (1976).

    Article  CAS  Google Scholar 

  18. Rojas, E. & Rudy, B. J. Physiol., Lond. 262, 501–531 (1976).

    Article  CAS  Google Scholar 

  19. Armstrong, C. M., Bezanilla, F. & Rojas, E. J. gen. Physiol. 62, 375–391 (1973).

    Article  CAS  Google Scholar 

  20. Goldman, D. E. J. gen. Physiol. 27, 37–60 (1943).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nonner, W., Spalding, B. & Hille, B. Low intracellular pH and chemical agents slow inactivation gating in sodium channels of muscle. Nature 284, 360–363 (1980). https://doi.org/10.1038/284360a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/284360a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing