Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Effects of visual experience on the maturation of the efferent system to the corpus callosum

Abstract

IN normal adult cats the first and second visual areas (V1 and V2) in the two cerebral hemispheres are interconnected through the corpus callosum (CC) by neurones (callosal neurones) which have a characteristic laminar location and are restricted to the region of the boundary between cytoarchitectonic areas 17 (V1) and 18 (V2)1–4. Callosal neurones acquire this distribution postnatally by disappearing (dying, or eliminating their callosal connections) from most of areas 17 and 18 and decreasing in number in layer VI (refs 5, 6). Here we show that although kittens deprived of pattern vision by binocular lid suture still develop an apparently normal distribution of callosal neurones, monocularly deprived or enucleated, or bilaterally squinted kittens retain to adulthood some callosal neurones in parts of area 17 where such neurones are not normally found. Thus, visual experience can influence the selection of callosal neurones although this selection is probably influenced by more than one factor.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Innocenti, G. M. & Fiore, L. Neurosci. Lett. 2, 245–252 (1976).

    Article  CAS  Google Scholar 

  2. Shatz, C. J. J. comp. Neurol. 173, 497–518 (1977).

    Article  CAS  Google Scholar 

  3. Sanides, D. & Donate-Oliver, F. in Architectonics of the Cerebral Cortex (eds Brazier, M. A. B. & Petsche, H.) 227–234 (Raven, New York, 1978).

    Google Scholar 

  4. Innocenti, G. M. (in preparation).

  5. Innocenti, G. M., Fiore, L. & Caminiti, R. Neurosci. Lett. 4, 237–242 (1977).

    Article  CAS  Google Scholar 

  6. Innocenti, G. M. Archs ital. Biol. 116, 463–470 (1978).

    CAS  Google Scholar 

  7. Hubel, D. H. & Wiesel, T. N. J. Neurophysiol 28, 1041–1059 (1965).

    Article  CAS  Google Scholar 

  8. Shatz, C. J. comp. Neurol. 171, 229–246 (1977).

    Article  CAS  Google Scholar 

  9. Wiesel, T. N. & Hubel, D. H. J. Neurophysiol. 28, 1029–1040 (1965).

    Article  CAS  Google Scholar 

  10. Hamburger, V. & Levi-Montalcini, R. J. exp. Zool. 111, 457–501 (1949).

    Article  CAS  Google Scholar 

  11. Redfern, P. A. J. Physiol., Lond. 209, 701–709 (1970).

    Article  CAS  Google Scholar 

  12. Clarke, P. G. H., Rogers, L. A. & Cowan, W. M. J. comp. Neurol. 167, 125–142 (1976).

    Article  CAS  Google Scholar 

  13. Rakic, P. Nature 261, 467–471 (1976).

    Article  ADS  CAS  Google Scholar 

  14. Hollyday, M. & Hamburger, V. J. comp. Neurol. 170, 311–320 (1976).

    Article  CAS  Google Scholar 

  15. Hubel, D. H., Wiesel, T. N. & Le Vay, S. Phil. Trans. R. Soc. B278, 377–409 (1977).

    Article  CAS  Google Scholar 

  16. Lund, R. D., Mitchell, D. E. & Henry, G. H. Brain Res. 144, 169–172 (1978).

    Article  CAS  Google Scholar 

  17. Choudhury, B. P., Whitteridge, D. & Wilson, M. E. Q. J. exp. Physiol. 50, 214–219 (1965).

    Article  CAS  Google Scholar 

  18. Berlucchi, G., Gazzaniga, M. S. & Rizzolatti, G. Archs ital. Biol. 105, 583–596 (1967).

    CAS  Google Scholar 

  19. Hubel, D. H. & Wiesel, T. N. J. Neurophysiol. 30, 1561–1573 (1967).

    Article  CAS  Google Scholar 

  20. Bilge, M., Bingle, A., Seneviratne, K. N. & Whitteridge, D. J. Physiol., Lond. 191, 116P (1967).

    CAS  PubMed  Google Scholar 

  21. Tusa, R. J., Palmer, L. A. & Rosenquist, A. C. J. comp. Neurol. 177, 213–236 (1978).

    Article  CAS  Google Scholar 

  22. Berlucchi, G. Brain Res. 37, 371–392 (1972).

    Article  CAS  Google Scholar 

  23. Doty, R. W. & Negrao, N. in Handbook of Sensory Physiology, Vol. 73 (ed. Jung, R.) 543–582, Springer, Berlin (1973).

    Google Scholar 

  24. Keating, M. J. Phil. Trans. R. Soc. Lond. B278, 277–294 (1977).

    Article  CAS  Google Scholar 

  25. Vakkur, G. J., Bishop, P. O. & Kozak, W. Vision Res. 3, 289–314 (1963).

    Article  Google Scholar 

  26. Glaser, E. M. & Van der Loos, H. IEEE Trans. biomed. Engng 12, 22–31 (1965).

    Article  CAS  Google Scholar 

  27. Coleman, D. R., Scalia, F. & Cabrales, E. Brain Res. 102, 156–163 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

INNOCENTI, G., FROST, D. Effects of visual experience on the maturation of the efferent system to the corpus callosum. Nature 280, 231–234 (1979). https://doi.org/10.1038/280231a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/280231a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing