Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role of Ca2+/K+ ion exchange in intracellular storage and release of Ca2+

Abstract

Although fluctuations in cytosolic Ca2+ concentration have a crucial role in relaying intracellular messages in the cell1, the dynamics of Ca2+ storage in and release from intracellular sequestering compartments remains poorly understood. The rapid release of stored Ca2+ requires large concentration gradients that had been thought to result from low-affinity buffering of Ca2+ by the polyanionic matrices within Ca2+-sequestering organelles2. However, our results here show that resting luminal free Ca2+ concentration inside the endoplasmic reticulum and in the mucin granules remains at low levels (20–35 μM). But after stimulation, the free luminal [Ca2+] increases, undergoing large oscillations, leading to corresponding oscillations of Ca2+ release to the cytosol. These remarkable dynamics of luminal [Ca2+] result from a fast and highly cooperative Ca2+/K+ ion-exchange process rather than from Ca2+ transport into the lumen. This common paradigm for Ca2+ storage and release, found in two different Ca2+-sequestering organelles, requires the functional interaction of three molecular components: a polyanionic matrix that functions as a Ca2+/K+ ion exchanger, and two Ca2+-sensitive channels, one to import K+ into the Ca2+-sequestering compartments, the other to release Ca2+ to the cytosol.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Oscillations of [Ca2+] in intact goblet cells and in isolated secretory vesicles.
Figure 2: Validation of the Ca2+ detection and optical sectioning methods.
Figure 3: Oscillations of [Ca2+]C and [Ca2+]ER in intact and permeabilized ciliated cells.
Figure 4: Ca2+/K+ ion-exchange in the ER and secretory vesicles.

Similar content being viewed by others

References

  1. Berridge, M. J. The AM and FM of calcium signalling. Nature 386, 759–760 (1997).

    Article  ADS  CAS  Google Scholar 

  2. Koch, G. L. E. The endoplasmic reticulum and calcium storage. BioEssays 12, 527–531 (1990).

    Article  CAS  Google Scholar 

  3. Marszalek, P. E., Farrell, B., Verdugo, P. & Fernandez, J. M. Kinetics of release of serotonin from isolated secretory granules. II. Ion-exchange determines the diffusivity of serotonin. Biophys. J. 73, 1169–1183 (1997).

    Article  CAS  Google Scholar 

  4. Verdugo, P. in Airway Secretion: Molecular Biophysics of Mucin Secretions (eds Takishima, T. & Shimura, S.) 101–117 (Marcel Dekker, New York, 1994).

    Google Scholar 

  5. Monck, J. R., Oberhauser, A. F., Keating, T. J. & Fernandez, J. M. Thin-section ratiometric Ca2+ images obtained by optical sectioning of Fura-2 loaded mast cells. J. Cell Biol. 116, 745–759 (1992).

    Article  CAS  Google Scholar 

  6. Breckenridge, L. J. & Almers, W. Final steps in exocytosis observed in a cell with giant secretory granules. Proc. Natl Acad. Sci. USA 84, 1945–1949 (1987).

    Article  ADS  CAS  Google Scholar 

  7. Terasaki, M., Song, J., Wong, J. R., Weiss, M. J. & Chen, L. B. Localization of endoplasmic reticulum in living and glutaraldehyde-fixed cells with fluorescent dyes. Cell 38, 101–108 (1984).

    Article  CAS  Google Scholar 

  8. Belan, P. V. et al. Anew technique for assessing the microscopic distribution of cellular calcium exit sites. Pflugers Arch. 433, 200–208 (1996).

    Article  CAS  Google Scholar 

  9. Tse, T. W., Tse, A. & Hille, B. Cyclic Ca2+ changes in intracellular stores of gonadotropes during gonadotropin-releasing hormone-stimulated Ca2+ oscillations. Proc. Natl Acad. Sci. USA 91, 9750–9754 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Lytton, J., Westlin, M. & Hanley, M. R. Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. J. Biol. Chem. 266, 17067–17071 (1991).

    CAS  PubMed  Google Scholar 

  11. Hehl, S., Golard, A. & Hille, B. Involvement of mitochondria in intracellular calcium sequestration by rat gonadotropes. Cell Calcium 20, 515–524 (1996).

    Article  CAS  Google Scholar 

  12. Ghosh, T. K., Eis, P. S., Mullaney, J. M., Ebert, C. L. & Gill, D. L. Competitive, reversible, and potent antagonism of inositol 1,4,5-trisphosphate-activated calcium release by heparin. J. Biol. Chem. 263, 11075–11079 (1988).

    CAS  PubMed  Google Scholar 

  13. Latorre, R., Oberhauser, A., Labarca, P. & Alvarez, O. Varieties of calcium-activated potassium channels. Annu. Rev. Physiol. 51, 385–399 (1989).

    Article  CAS  Google Scholar 

  14. Sasaki, S., Nakagaki, I., Kondo, H. & Hori, S. Changes in element concentrations induced by agonist in pig pancreatic acinar cells. Pflugers Arch. 432, 538–545 (1996).

    Article  CAS  Google Scholar 

  15. O'Rourke, F. et al. Ca2+ release by inositol (1,4,5)-trisphosphate is blocked by the K+-channel blockers apamin and tetraphenylammonium ion, and a monoclonal antibody to a 63 kDa membrane protein: reversal of blockade by K+ ionophores nigericin and valinomycin and purification of the 63 kDa antibody-binding protein. Biochem. J. 300, 673–683 (1994).

    Article  CAS  Google Scholar 

  16. Joseph, S. K. & Williamson, J. R. Characteristics of inositol trisphosphate-mediated Ca2+ release from permeabilized hepatocytes. J. Biol. Chem. 261, 14658–14664 (1986).

    CAS  PubMed  Google Scholar 

  17. Meldolesi, J. & Pozzan, T. The endoplasmic reticulum Ca2+ store: a view from the lumen. Trends Biol. Sci. 23, 10–14 (1998).

    Article  CAS  Google Scholar 

  18. Ikemoto, N., Antonui, B., Kang, J. J., Meszaros, L. G. & Rojat, M. Intravesicular calcium trasient during calcium release from sarcoplasmic reticulum. Biochemistry 30, 5230–5237 (1991).

    Article  CAS  Google Scholar 

  19. Mitchell, R. D., Simmerman, H. K. B. & Jones, L. R. Ca2+ binding effects on protein conformation and protein interactions of canine cardiac calsequestrin. J. Biol. Chem. 263, 1376–1381 (1988).

    CAS  PubMed  Google Scholar 

  20. Forstner, J. F. & Forstner, G. G. Calcium binding to intestinal goblet mucin. Biochim. Biophys. Acta 386, 283–292 (1975).

    Article  CAS  Google Scholar 

  21. van de Put, F. H. M. M. & Elliott, A. C. The endoplasmic reticulum can act as a functional Ca2+ store in all subcellular regions of the pancreatic acinar cell. J. Biol. Chem. 272, 27764–27770 (1997).

    Article  CAS  Google Scholar 

  22. Blondel, O., Bell, G. I. & Seino, S. Inositol 1,4,5-trisphosphate receptors, secretory granules and secretion in endocrine and neuroendrocrine cells. Trends Neurosci. 18, 157–161 (1995).

    Article  CAS  Google Scholar 

  23. Gerasimenko, O. V., Gerasimenko, J. V., Belan, P. V. & Petersen, O. H. Inositol trisphosphate and cyclic ADP-ribose-mediated release of Ca2+ from single isolated pancreatic zymogen granules. Cell 84, 473–480 (1996).

    Article  CAS  Google Scholar 

  24. Yule, D. I., Ernst, S. A., Ohnishi, H. & Wojcikiewicz, R. J. H. Evidence that zymogen granules are not a physiologically relevant calcium pool. J. Biol. Chem. 272, 9093–9098 (1997).

    Article  CAS  Google Scholar 

  25. Lorez, H. P. & Da Prada, M. Fluorescence microscopical study of 5-hydroxytryptamine storage organelles in mepacrine-incubated blood plateletes of beige mice (Chediak–Higashi syndrome). Experientia 34, 663–664 (1978).

    Article  CAS  Google Scholar 

  26. Verdugo, P. Ca2+-dependent hormonal stimulation of ciliary activity. Nature 283, 764–765 (1980).

    Article  ADS  CAS  Google Scholar 

  27. Davis, C. W. in Airway Mucus: Basic Mechanisms and Clinical Perspectives (eds Rogers, D. F. & Lethem, M. I.) 149–177 (Springer-Verlag, Basel, 1997).

    Book  Google Scholar 

  28. Finch, E. A., Turner, T. J. & Goldin, S. M. Calcium as a coagonist of inositol 1,4,5-trisphosphate-induced calcium release. Science 252, 443–446 (1991).

    Article  ADS  CAS  Google Scholar 

  29. Aitken, M. L., Villalon, M., Pier, M., Verdugo, P. & Nameroff, M. Characterization of a marker tracheal basal cells. Exp. Lung Res. 21, 1–16 (1995).

    Article  CAS  Google Scholar 

  30. Kao, J. P. Y. in A Practical Guide to the Study of Calcium in Living Cells (ed. Nuccitelli, R.) 155–181 (Academic, San Diego, (1994)).

    Book  Google Scholar 

Download references

Acknowledgements

We thank M. Pier for assistance in cell culture, and P. Detwiler, J. M. Fernandez, R.Hart, B. Hille, T. Hinds, A. Gordon, G. Pollack and J. L. Vergara for suggestions and the critical review of the manuscript. This work was funded by grants from USA NSF, the USA DOE and the CONRAD Program of Mellon Foundation. W.-C.C. and T.N. were supported by scholarships from the Center for Nanotechnology and the MSTP Program from the University of Washington, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Verdugo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, T., Chin, WC. & Verdugo, P. Role of Ca2+/K+ ion exchange in intracellular storage and release of Ca2+. Nature 395, 908–912 (1998). https://doi.org/10.1038/27686

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/27686

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing