Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evolutionary substitutions and the antigenic structure of globular proteins

Abstract

A FEW years ago, Crumpton1 and Reichlin2 reviewed information about the antigenic structure of globular proteins of known amino acid sequence and three-dimensional structure. It seemed that only a small fraction of the amino acid residues in such proteins participated directly in antibody binding. This impression was reinforced by Atassi and co-workers, who proposed antigenic structures of two such proteins—sperm whale myoglobin3 and chicken lysozyme c (ref.4). These workers claim to have identified all those amino acid residues which bind to antibodies present in antisera directed against the protein. These claims stem from extensive studies with chemically modified forms of the protein as well as with antigenically active fragments obtained by specific cleavage of the protein. The antigenic residues are arranged in groups called determinants, each of which binds a specific class of antibodies. A typical determinant contains four to seven residues. For both lysozyme and myoglobin, the proportion of antigenic residues is about 15% of the total number of amino acid residues in the protein3,4. Information has also accumulated concerning the power of antisera to detect evolutionary substitutions of amino acids in globular proteins. Quantitative immunological comparisons of related proteins of known amino acid sequence have consistently shown a strong correlation between degree of sequence difference and degree of antigenic difference. This has been demonstrated most thoroughly for monomeric globular proteins such as lysozymes5,6, ribonucleases7, azurins8 and cytochromes c (refs 9, 10). Less complete information suggests that the correlation holds also for plastocyanins10, tryptophan synthetase α subunits11, serum albumins12, carbonic anhydrases and myoglobins13 (A. B. Champion, E. M. Prager, S. L. Welch, and A. C. Wilson, unpublished), and ferredoxins14. From the strength of the correlations observed for lysozymes, ribonucleases, azurins and cytochromes (r > 0.9), one may make the statistical inference that about 80% (that is, 0.9 squared) of those amino acid substitutions which accumulate during evolution are immunologically detectable7. Here we summarise additional evidence that the majority of evolutionary substitutions are immunologically detectable, and we discuss how to reconcile this evidence with the chemical evidence that only a small fraction of the amino acids are antigenic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Crumpton, M. J. in The Antigens (ed. Sela, M.) 133–158 (Academic, New York, 1974).

    Google Scholar 

  2. Reichlin, M. Adv. Immun. 20, 71–123 (1975).

    Article  CAS  Google Scholar 

  3. Atassi, M. Z. Immunochemistry 12, 423–438 (1975).

    Article  CAS  Google Scholar 

  4. Atassi, M. Z. & Habeeb, A. F. S. A. in Immunochemistry of Proteins 2 (ed. Atassi, M. Z.) 117–264 (Plenum, New York, 1977).

    Book  Google Scholar 

  5. Jollès, J., Schoentgen, F., Jollès, P., Prager, E. M. & Wilson, A. C. J. molec. Evol. 8, 59–78 (1976).

    Article  ADS  Google Scholar 

  6. Ibrahimi, I. thesis, Univ. Calif., Berkeley (1977).

  7. Prager, E. M., Welling, G. W. & Wilson, A. C. J. molec. Evol. 10, 293–307 (1978).

    Article  ADS  CAS  Google Scholar 

  8. Champion, A. B., Soderberg, K. L., Wilson, A. C. & Ambler, R. P. J. molec. Evol. 5, 291–305 (1975).

    Article  ADS  CAS  Google Scholar 

  9. Prager, E. M. & Wilson, A. C. J. biol. Chem. 246, 5978–5989 (1971).

    CAS  PubMed  Google Scholar 

  10. Wallace, D. G. & Boulter, D. Phytochemistry 15, 137–141 (1976).

    Article  CAS  Google Scholar 

  11. Rocha, V., Crawford, I. P. & Mills, S. E. J. Bact. 111, 163–168 (1972).

    Article  CAS  Google Scholar 

  12. Maxson, L. R. & Wilson, A. C. Science 185, 66–68 (1974).

    Article  ADS  CAS  Google Scholar 

  13. Prager, E. M. & Wilson, A. C. J. biol. Chem. 246, 7010–7017 (1971).

    CAS  PubMed  Google Scholar 

  14. Tel-Or, E. et al., Biochim. biophys. Acta 490, 120–131 (1977).

    Article  CAS  Google Scholar 

  15. Hurrell, J. G. R., Smith, J. A., Todd, P. E. & Leach, S. J. Immunochemistry 14, 283–288 (1977).

    Article  CAS  Google Scholar 

  16. LaRue, J. N. & Speck, J. C., Jr J. biol. Chem. 245, 1985–1991 (1970).

    CAS  PubMed  Google Scholar 

  17. Prager, E. M., Arnheim, N., Mross, G. A. & Wilson, A. C. J. biol. Chem. 247, 2905–2916 (1972).

    CAS  PubMed  Google Scholar 

  18. Champion, A. B., Prager, E. M., Wachter, D. & Wilson, A. C. in Biochemical and Immunological Taxonomy of Animals (ed. Wright, C. A.) 397–416 (Academic, New York, 1974).

    Google Scholar 

  19. Cocks, G. T. & Wilson, A. C. Science 164, 188–189 (1969).

    Article  ADS  CAS  Google Scholar 

  20. Sokal, R. R. & Rohlf, F. J. Biometry 96 (Freeman, San Francisco, 1969).

  21. Sela, M. Science 166, 1365–1374 (1969).

    Article  ADS  CAS  Google Scholar 

  22. Anfinsen, C. B. & Scheraga, H. A. Adv. Protein Chem. 29, 205–300 (1975).

    Article  CAS  Google Scholar 

  23. Atassi, M. Z., Tarlowski, D. P. & Paull, J. H. Biochim. biophys. Acta 221, 623–635 (1970).

    Article  CAS  Google Scholar 

  24. Wilson, A. C. & Prager, E. M. in Lysozyme (eds Osserman, E. G., Canfield, R. E. & Beychok, S.) 127–141 (Academic, New York, 1974).

    Book  Google Scholar 

  25. Arnon, R. in Lysozyme (eds Osserman, E. F., Canfield, R. E. & Beychok, S.) 105–120 (Academic, New York, 1974).

    Book  Google Scholar 

  26. Imanishi, M., Miyagawa, N., Fujio, H. & Amano, T. Biken J. 12, 85–96 (1969).

    CAS  PubMed  Google Scholar 

  27. Maron, E., Eshdat, Y. & Sharon, N. Biochim. Biophys. Acta 278, 243–249 (1972).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

WHITE, T., IBRAHIMI, I. & WILSON, A. Evolutionary substitutions and the antigenic structure of globular proteins. Nature 274, 92–94 (1978). https://doi.org/10.1038/274092a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/274092a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing