Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Silicon-isotope composition of diatoms as an indicator of past oceanic change

Abstract

Silicon is essential for the growth of diatoms, a group of phytoplankton with opal (amorphous hydrated silica) shells. Diatoms largely control the cycling of silicon in the ocean1 and, conversely, diatom silica production rates can be limited by the availability of silicic acid2. Diatoms are biogeochemically important in that they account for an estimated 75% of the primary production occurring in coastal and nutrient-replete waters1, rising to more than 90% during ice-edge blooms such as occur in the Ross Sea, off Antarctica3. There are few means by which to reconstruct the history of diatom productivity and marine silicon cycling, and thus to explore the potential contribution of diatoms to past oceanic biogeochemistry or climate. Indices based on the accumulation of sedimentary opal are often biased by the winnowing and focusing of sediments and by opal dissolution4,5,6,7. Normalization of opal accumulation records using particle-reactive natural radionuclides may correct for sediment redistribution artefacts and the dissolution of opal within sediments6,8, but not for opal dissolution before it arrives at the sea floor. Half of the opal produced in the euphotic zone may dissolve before sinking to a depth of 200 m (ref. 1), constituting a potentially large bias to both normalized and uncorrected records of opal accumulation. Here we exploit the potential that variations in the ratio of 30Si to 28Si in sedimentary opal may provide information on past silicon cycling that is unbiased by opal dissolution. Our silicon stable-isotope measurements suggest that the percentage utilization of silicic acid by diatoms in the Southern Ocean during the last glacial period was strongly diminished relative to the present interglacial.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: δ30Si, percentage C.davisiana and δ13Corg against depth in the southeast Indian core E50-11 (55° 56′ S, 104° 57′ E, 3,923 m below sea level, m.b.s.l.).
Figure 2: δ30Si and other proxies against depth in Indian Ocean core RC11-94 (54°48′ S, 53° 03′ E, 4,3.03 m.b.s.l.).
Figure 3: δ30Si and other proxies against depth in South Atlantic sediment core RC13-269 (52° 38′ S, 00° 08&.prime; W, 2,591 m.b.s.l.).

Similar content being viewed by others

References

  1. Nelson, D. M., Tréguer, P., Brzezinski, M. A., Leynaert, A. & Quéguiner, B. Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Glob. Biogeochem. Cycles 9, 359–372 (1995).

    Article  ADS  CAS  Google Scholar 

  2. Brzezinski, M. A. & Nelson, D. M. Chronic substrate limitation of silicic acid uptake rates in the western Sargasso Sea. Deep-Sea Res. II 43, 437–453 (1996).

    Article  ADS  CAS  Google Scholar 

  3. Nelson, D. A. & Smith, W. O. J Phytoplankton bloom dynamics of the western Ross Sea Ice edge II. Mesoscale cycling of nitrogen and silicon. Deep-Sea Res. A 33, 1389–1412 (1986).

    Article  ADS  CAS  Google Scholar 

  4. Charles, C. D., Froelich, P. N., Zibello, M. A., Mortlock, R. A. & Morley, J. J. Biogenic opal in Southern Ocean sediments over the last 450,000 years: Implications for surface water chemistry and circulation. Paleoceanography 6, 697–728 (1991).

    Article  ADS  Google Scholar 

  5. Mortlock, R. A. et al . Evidence for lower productivity in the Antarctic Ocean during the last glaciation. Nature 351, 220–223 (1991).

    Article  ADS  Google Scholar 

  6. Kumar, N. et al . Increased biological productivity and export production in the glacial Southern Ocean. Nature 378, 675–680 (1985).

    Article  ADS  Google Scholar 

  7. Dymond, J., Collier, R., McManus, J., Honjo, S. & Manganini, S. Can the aluminum and titaniumcontents of ocean sediments be used to determine the paleoproductivity of the oceans? Paleoceanography 12, 586–593 (1997).

    Article  ADS  Google Scholar 

  8. Kumar, N., Gwiazda, R., Anderson, R. F. & Froelich, P. N. 231Pa/230Th ratios in sediments as a proxy for past changes in Southern Ocean productivity. Nature 362, 45–48 (1993).

    Article  ADS  CAS  Google Scholar 

  9. De La Rocha, C. L., Brzezinski, M. A. & DeNiro, M. J. Fractionation of silicon isotopes by marine diatoms during biogenic silica formation. Geochim. Cosmochim. Acta 61, 5051–5056 (1997).

    Article  ADS  CAS  Google Scholar 

  10. Le Jehan, S. & Tréguer, P. Uptake and regeneration of Si : N : P ratios in the Indian Ocean. Polar Biol. 2, 127–136 (1983).

    Article  Google Scholar 

  11. Van Bennekom, A. J., Berger, W. H., Van Der Gaast, S. J. & De Vries, R. T. P. Primary productivity and the silica cycle in the Southern Ocean (Atlantic sector). Palaeogeogr. Palaeoclimatol. Palaeoecol. 67, 19–30 (1988).

    Article  CAS  Google Scholar 

  12. Shemesh, A., Mortlock, R. A., Smith, R. J. & Froelich, P. N. Determination of Ge/Si in marine siliceous microfossils: Separation, cleaning and dissolution of diatoms and radiolaria. Mar. Chem. 25, 305–323 (1988).

    Article  CAS  Google Scholar 

  13. De La Rocha, C. L., Brzezinski, M. A. & DeNiro, M. J. Purification, recovery, and laser-driven fluorination of silicon from dissolved and particulate silica for the measurement of natural stable isotope abundances. Analyt. Chem. 68, 3746–3750 (1996).

    Article  CAS  Google Scholar 

  14. Hays, J. D., Lozano, J. A., Shackleton, N. & Irving, G. Reconstruction of the Atlantic and western Indian Ocean sectors of the 18,000 B.P. Antarctic Ocean. Geol. Soc. Am. Mem. 145, 337–372 (1976).

    CAS  Google Scholar 

  15. Cooke, D. W. & Hays, J. D. in Antarctic Geoscience (ed. Craddock, C.) 1017–1025 (Univ. Wisconsin Press, Madison, (1982)).

    Google Scholar 

  16. Burckle, L., De Mauret, K. & McHigh, C. G. Latest Quaternary paleoceanography of the Atlantic sector of the Southern Ocean. Antarct. J. US 21, 138 (1986).

    Google Scholar 

  17. De Mauret, K., Burckle, L. H. & McHugh, C. G. Late Quaternary paleoenvironments in the Atlantic sector of the Southern Ocean. Geol. Soc. Am. Abstr. 18, 583 (1986).

    Google Scholar 

  18. Charles, C. D. & Fairbanks, R. G. in Geological History of the Polar Oceans: Arctic Versus Antarctic (eds Bleil, U.& Theide, J.) 519–538 (Kluwer Academic, Bremen, (1990)).

    Book  Google Scholar 

  19. Shemesh, A., Macko, S. E., Charles, C. D. & Rau, G. H. Isotopic evidence for reduced productivity in the glacial Southern Ocean. Science 262, 407–410 (1993).

    Article  ADS  CAS  Google Scholar 

  20. Shemesh, A., Burckle, L. H. & Hays, J. D. Meltwater input to the Southern Ocean during the last glacial maximum. Science 266, 1542–1544 (1994).

    Article  ADS  CAS  Google Scholar 

  21. Shemesh, A., Burckle, L. G. & Hays, J. D. Late Pleistocene oxygen isotope records of biogenic silica from the Atlantic sector of the Southern Ocean. Paleoceanography 10, 179–196 (1995).

    Article  ADS  Google Scholar 

  22. Froelich, P. N. et al . River fluxes of dissolved silica to the ocean were higher during glacials: Ge/Si in diatoms, rivers, and oceans. Paleoceanography 7, 739–767 (1982).

    Article  ADS  Google Scholar 

  23. Tréguer, P. et al . The silica balance in the world ocean: A reestimate. Science 268, 375–379 (1995).

    Article  ADS  Google Scholar 

  24. Douthitt, C. B. The geochemistry of the stable isotopes of silicon. Geochim. Cosmochim. Acta 46, 1449–1458 (1982).

    Article  ADS  CAS  Google Scholar 

  25. Burckle, L. H. & Cirilli, J. Origin of diatom ooze belt in the Southern Ocean: Implications for late Quaternary paleoceanography. Micropaleontology 33, 82–86 (1987).

    Article  Google Scholar 

  26. Shemesh, A., Burckle, L. H. & Froelich, P. N. Dissolution and preservation of Antarctic diatoms and the effect on sediment thanatocoenoses. Quat. Sci. 31, 288–308 (1989).

    Google Scholar 

  27. Francois, R. et al . Contribution of Southern Ocean surface water stratification to low atmospheric CO2concentrations during the last glacial period. Nature 389, 929–935 (1997).

    Article  ADS  CAS  Google Scholar 

  28. Hutchins, D. A. & Bruland, K. W. Iron-limited diatom growth and Si : N uptake ratios in a coastal upwelling. Nature 393, 561–564 (1998).

    Article  ADS  CAS  Google Scholar 

  29. Takeda, S. Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature 393, 774–777 (1998).

    Article  ADS  CAS  Google Scholar 

  30. Sverdrup, H. U. On conditions for the vernal blooming of phytoplankton. J. Cons. Perm. Int. Explor. Mer 18, 287–295 (1953).

    Article  Google Scholar 

  31. Singer, A. J. Diatom 13C Records from Southern Ocean Sediments: Glacial-interglacial Variation in Surface Water Characteristics.Thesis, Weizmann Institute of Science (1994).

    Google Scholar 

  32. Mortlock, R. A. & Froelich, P. N. Asimple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep-Sea Res. 36, 1415–1426 (1989).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. J. DeMaster and P. N. Froelich for reviews; P. N. Froelich for the per cent opal data; D. W. Lea, H. Berg, L. K. Crowder, W. Golden, J. Kennett, R. L. Ripperdan and K. Shea for advice and support; and the curator of the Lamont-Doherty Geological Observatory for samples. This work was supported by the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. L. De La Rocha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De La Rocha, C., Brzezinski, M., DeNiro, M. et al. Silicon-isotope composition of diatoms as an indicator of past oceanic change. Nature 395, 680–683 (1998). https://doi.org/10.1038/27174

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/27174

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing