Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of a bacterial 30S ribosomal subunit at 5.5 Å resolution

Abstract

The 30S ribosomal subunit binds messenger RNA and the anticodon stem-loop of transfer RNA during protein synthesis. A crystallographic analysis of the structure of the subunit from the bacterium Thermus thermophilus is presented. At a resolution of 5.5 Å, the phosphate backbone of the ribosomal RNA is visible, as are the α-helices of the ribosomal proteins, enabling double-helical regions of RNA to be identified throughout the subunit, all seven of the small-subunit proteins of known crystal structure to be positioned in the electron density map, and the fold of the entire central domain of the small-subunit ribosomal RNA to be determined.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electron-density map of the 30S subunit at 5.5 Å resolution.
Figure 2: Features visible at 5.5 Å resolution.
Figure 3: The central domain of 16S RNA.
Figure 4: Stereo view of the three-way junction formed by helices 20, 21 and 22 of the central domain of 16S RNA.
Figure 5: Stereo view of the interactions made by helix 27 of the central domain with helices 24 and 44 of 16S RNA.
Figure 6: Stereo view of the relative disposition of proteins S4, S5 and S8 as they occur in the 30S subunit.
Figure 7: Two orthogonal stereo views of the 30S subunit.

Similar content being viewed by others

References

  1. Alberts, B. et al. Molecular Biology of the Cell (Garland, New York, 1995).

    Google Scholar 

  2. von Böhlen, K. et al. Characterization and preliminary attempts for derivatization of crystals of large ribosomal subunits from Haloarcula marismortui diffracting to 3 Å resolution. J. Mol. Biol. 222, 11–15 (1991).

    Article  Google Scholar 

  3. Trakhanov, S. D. et al. Crystallization of 70 S ribosomes and 30 S ribosomal subunits from Thermus thermophilus. FEBS Lett. 220, 319–322 (1987).

    Article  Google Scholar 

  4. Yusupov, M. M., Tischenko, S. V., Trakhanov, S. D., Ryazantsev, S. N. & Garber, M. B. Anew crystalline form of 30 S ribosomal subunits from Thermus thermophilus. FEBS Lett. 238, 113–115 (1988).

    Article  Google Scholar 

  5. Yonath, A. et al. Characterization of crystals of small ribosomal subunits. J. Mol. Biol. 203, 831–834 (1988).

    Article  CAS  Google Scholar 

  6. Yonath, A. et al. Crystallographic studies on the ribosome, a large macromolecular assembly exhibiting severe nonisomorphism, extreme beam sensitivity and no internal symmetry. Acta Crystallogr. A 54, 945–955 (1998).

    Article  CAS  Google Scholar 

  7. Lata, K. R. et al. Three-dimensional reconstruction of the Escherichia coli 30S ribosomal subunit in ice. J. Mol. Biol. 262, 43–52 (1996).

    Article  CAS  Google Scholar 

  8. McCutcheon, J. P. et al. Location of translational initiation factor IF3 on the small ribosomal subunit. Proc. Natl Acad. Sci. USA 96, 4301–4306 (1999).

    Article  ADS  CAS  Google Scholar 

  9. Mueller, F. & Brimacombe, R. Anew model for the three-dimensional folding of Escherichia coli 16 S ribosomal RNA. I. Fitting the RNA to a 3D electron microscopic map at 20 Å. J. Mol. Biol. 271, 524–544 (1997).

    Article  CAS  Google Scholar 

  10. Allain, F. H. & Varani, G. Structure of the P1 helix from group I self-splicing introns. J. Mol. Biol. 250, 333–353 (1995).

    Article  CAS  Google Scholar 

  11. Ramakrishnan, V. & White, S. W. Structure of ribosomal protein S5 reveals sites of interaction with 16S RNA. Nature 358, 768–771 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Lindahl, M. et al. Crystal structure of the ribosomal protein S6 from Thermus thermophilus. EMBO J. 13, 1249–1254 (1994).

    Article  CAS  Google Scholar 

  13. Jaishree, T. N., Ramakrishnan, V. & White, S. W. Solution structure of prokaryotic ribosomal protein S17 by high-resolution NMR spectroscopy. Biochemistry 35, 2845–2853 (1996).

    Article  CAS  Google Scholar 

  14. Davies, C., Ramakrishnan, V. & White, S. W. Structural evidence for specific S8–RNA and S8–protein interactions within the 30S ribosomal subunit; ribosomal protein S8 from Bacillus stearothermophilus at 1.9 Å resolution. Structure 4, 1093–1104 (1996).

    Article  CAS  Google Scholar 

  15. Berglund, H. Rak, A. Serganov, A., Garber, M. & Härd, T. Solution structure of the ribosomal RNA binding protein S15 from Thermus thermophilus. Nature Struct. Biol. 4, 20–23 (1997).

    Article  CAS  Google Scholar 

  16. Winberly, B. T., White, S. W. & Ramakrishnan, V. The structure of ribosomal protein S7 at 1.9 Å resolution reveals a β-hairpin motif that binds double-stranded nucleic acids. Structure 5, 1187–1198 (1997).

    Article  Google Scholar 

  17. Hosaka, H. et al. Ribosomal protein S7: a new RNA-binding motif with structural similarities to a DNA architectural factor. Structure 5, 1199–1208 (1997).

    Article  CAS  Google Scholar 

  18. Clemons, W. M. J, Davies, C., White, S. W. & Ramakrishnan, V. Conformational variability of the N-terminal helix in the structure of ribosomal protein S15. Structure 6, 429–438 (1998).

    Article  CAS  Google Scholar 

  19. Nevskaya, N. et al. Crystal structure of ribosomal protein S8 from Thermus thermophius reveals a high degree of structural conservation of a specific RNA binding site. J. Mol. Biol. 279, 233–244 (1998).

    Article  CAS  Google Scholar 

  20. Davies, C., Gerstner, R. B., Draper, D. E., Ramakrishnan, V. & White, S. W. The crystal structure of ribosomal protein S4 reveals a two-domain molecule with an extensive RNA-binding surface: one domain shows structural homology to the ETS DNA-binding motif. EMBO J. 17, 4545–4558 (1998).

    Article  CAS  Google Scholar 

  21. Markus, M. A., Gerstner, R. B., Draper, D. E. & Torchia, D. A. The solution structure of ribosomal protein S4 delta41 reveals two subdomains and a positively charged surface that may interact with RNA. EMBO J. 17, 4559–4571 (1998).

    Article  CAS  Google Scholar 

  22. Capel, M. S. et al. Acomplete mapping of the proteins in the small ribosomal subunit of Escherichia coli. Science 238, 1403–1406 (1987).

    Article  ADS  CAS  Google Scholar 

  23. Powers, T. & Noller, H. F. Hydroxyl radical footprinting of ribosomal proteins on 16S rRNA. RNA 1, 194–209 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Mueller, F. & Brimacombe, R. Anew model for the three-dimensional folding of Escherichia coli 16 S ribosomal RNA. II. The RNA–protein interaction data. J. Mol. Biol. 271, 545–565 (1997).

    Article  CAS  Google Scholar 

  25. Ramakrishnan, V. et al. Position of proteins S6, S11 and S15 in the 30 S ribosomal subunit of Escherichia coli. J. Mol. Biol. 153, 739–760 (1981).

    Article  CAS  Google Scholar 

  26. Ungewickell, E., Garrett, R., Ehresmann, C., Stiegler, P. & Fellner, P. An investigation of the 16-S RNA binding sites of ribosomal proteins S4, S8, S15, and S20 from Escherichia coli. Eur. J. Biochem. 51, 165–180 (1975).

    Article  CAS  Google Scholar 

  27. Mueller, F., Stark, H., van Heel, M., Rinke-Appel, J. & Brimacombe, R. Anew model for the three-dimensional folding of Escherichia coli 16 S ribosomal RNA. III. The topography of the functional centre. J. Mol. Biol. 271, 566–587 (1997).

    Article  CAS  Google Scholar 

  28. Moazed, D. & Noller, H. F. Binding of tRNA to the ribosomal A and P sites protects two distinct sets of nucleotides in 16 S rRNA. J. Mol. Biol. 211, 135–145 (1990).

    Article  CAS  Google Scholar 

  29. Lee, K., Varma, S., SantaLucia, J. J & Cunningham, P. R. In vivo determination of RNA structure–function relationships: analysis of the 790 loop in ribosomal RNA. J. Mol. Biol. 269, 732–743 (1997).

    Article  CAS  Google Scholar 

  30. Merryman, C., Moazed, D., McWhirter, J. & Noller, H. F. Nucleotides in 16S rRNA protected by the association of 30S and 50S ribosomal subunits. J. Mol. Biol. 285, 97–105 (1999).

    Article  CAS  Google Scholar 

  31. Lodmell, J. S. & Dahlberg, A. E. Aconformational switch in Escherichia coli 16S ribosomal RNA during decoding of messenger RNA. Science 277, 1262–1267 (1997).

    Article  CAS  Google Scholar 

  32. Gregory, R. J. et al. Interaction of ribosomal proteins S6, S8, S15 and S18 with the central domain of 16 S ribosomal RNA from Escherichia coli. J. Mol. Biol. 178, 287–302 (1984).

    Article  CAS  Google Scholar 

  33. Greuer, B., Osswald, M., Brimacombe, R. & Stöffler, G. RNA-protein cross-linking in Escherichia coli 30S ribosomal subunits; determination of sites on 16S RNA that are cross-linked to proteins S3, S4, S7, S9, S10, S11, S17, S18 and S21 by treatment with bis-(2-chloroethyl)-methylamine. Nucleic Acids Res. 15, 3241–3255 (1987).

    Article  CAS  Google Scholar 

  34. Wu, H., Jiang, L. & Zimmermann, R. A. The binding site for ribosomal protein S8 in 16S rRNA and spc mRNA from Escherichia coli: minimum structural requirements and the effects of single bulged bases on S8–RNA interaction. Nucleic Acids Res. 22, 1687–1695 (1994).

    Article  CAS  Google Scholar 

  35. Moine, H., Cachia, C., Westhof, E., Ehresmann, B. & Ehresmann, C. The RNA binding site of S8 ribosomal protein of Escherichia coli: Selex and hydroxyl radical probing studies. RNA 3, 255–268 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Batey, R. & Williamson, J. Interaction of the Bacillus stearothermophilus ribosomal protein S15 with 16 S rRNA: I. Defining the minimal RNA site. J. Mol. Biol. 261, 536–549 (1996).

    Article  CAS  Google Scholar 

  37. Serganov, A. A. et al. The 16S rRNA binding site of Thermus thermophilus ribosomal protein S15: comparison with Escherichia coli S15, minimum site and structure. RNA 2, 1124–1138 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kalurachchi, K., Uma, K., Zimmermann, R. A. & Nikonowicz, E. P. Structural features of the binding site for ribosomal protein S8 in Escherichia coli 16S rRNA defined using NMR spectroscopy. Proc. Natl Acad. Sci. USA 94, 2139–2144 (1997).

    Article  ADS  CAS  Google Scholar 

  39. Urlaub, H., Thiede, B., Muller, E. C., Brimacombe, R. & Wittmann-Liebold, B. Identification and sequence analysis of contact sites between ribosomal proteins and rRNA in Escherichia coli 30 S subunits by a new approach using matrix-assisted laser desorption/ionization-mass spectrometry combined with N-terminal microsequencing. J. Biol. Chem. 272, 14547–14555 (1997).

    Article  CAS  Google Scholar 

  40. Atmadja, J. et al. The tertiary folding of Escherichia coli 16S RNA, as studied by in situintra-RNA cross-linking of 30S ribosomal subunits with bis-(2-chloroethyl)-methylamine. Nucleic Acids Res. 14, 659–673 (1986).

    Article  CAS  Google Scholar 

  41. Agrawal, R. K., Penczek, P., Grassucci, R. A. & Frank, J. Visualization of elongation factor G on the Escherichia coli 70S ribosome: the mechanism of translocation. Proc. Natl Acad. Sci. USA 95, 6134–6138 (1998).

    Article  ADS  CAS  Google Scholar 

  42. van Acken, U. Proteinchemical studies on ribosomal proteins S4 and S12 from ram (ribosomal ambiguity) mutants of Escherichia coli. Mol. Gen. Genet. 140, 61–68 (1975).

    Article  CAS  Google Scholar 

  43. Wittmann-Liebold, B. & Greuer, B. The primary structure of protein S5 from the small subunit of the Escherichia coli ribosome. FEBS Lett. 95, 91–98 (1978).

    Article  CAS  Google Scholar 

  44. Allen, G., Capasso, R. & Gualerzi, C. Identification of the amino acid residues of proteins S5 and S8 adjacent to each other in the 30 S ribosomal subunit of Escherichia coli. J. Biol. Chem. 254, 9800–9806 (1979).

    CAS  PubMed  Google Scholar 

  45. Agafonov, D. E., Kolb, V. A. & Spirin, A. S. Proteins on ribosome surface: measurements of protein exposure by hot tritium bombardment technique. Proc. Natl Acad. Sci. USA 94, 12892–12897 (1997).

    Article  ADS  CAS  Google Scholar 

  46. Otwinowski, Z. & Minor, W. in Methods in Enzymology (eds Carter, C. W. J. & Sweet, R. M.) 307–325 (Academic, New York, 1997).

    Google Scholar 

  47. Terwilliger, T. & Berendzen, J. Automated MAD and MIR structure determination. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  48. Abrahams, J. P. & Leslie, A. G. W. Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D 52, 30–42 (1996).

    Article  CAS  Google Scholar 

  49. Jones, T. A. & Kjeldgaard, M. Electron-density map interpretation. Methods Enzymol. 277B, 173–207 (1997).

    Article  Google Scholar 

  50. Carson, M. Ribbons 2.0. J. Appl. Crystallogr. 24, 958–961 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the US NIH (to S. W. White & V.R.), the UK MRC and the University of Utah. Beamlines X12B and X25 at the NSLS are supported by the Office of Basic Energy Research of the US Department of Energy and by the NIH. We thank L. Berman and H. Lewis for their help on beamline X25; T. Terwilliger for advice on using SOLVE; P. Reversi and C. Vonrhein for discussions on phasing strategies; M. Pope for gifts of compounds of polytungstate clusters; J. Löwe and G.Schneider for gifts of hexatantalum bromide; B. S. Brunschwig and M. H. Chou for synthesizing osmium hexammine chloride; and S. C. Harrison, K. Nagai and D. Rhodes for critical comments on the manuscript. Coordinates for our partial model fo the 30S have been deposited in the protein data bank, with accession number 1QD7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ramakrishnan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clemons, W., May, J., Wimberly, B. et al. Structure of a bacterial 30S ribosomal subunit at 5.5 Å resolution. Nature 400, 833–840 (1999). https://doi.org/10.1038/23631

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/23631

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing