Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Surface impact ionization of polar-molecule clusters through pickup of alkali atoms

Abstract

The observation that clusters of neutral H2O () or SO2 (ref. 5) molecules, on impact with essentially any solid surface, can decay efficiently into positively and negatively charged fragments has defied explanation, not least because the kinetic energy per molecule can be much smaller than the molecular ionization potentials. Here we present a microscopic model of the charging mechanism, based on a mass analysis of charged SO2 cluster fragments, which appears to be applicable to polar-molecule clusters more generally. Our mass spectra reveal that all positively charged fragments carry an alkali ion (sodium, potassium or caesium), whereas the negative fragments are simply (SO2)n. The yields of both charged species are comparable, and can be enhanced significantly by pre-treating the sample surface with additional alkali atoms. The key to charge separation in the clusters therefore appears to be the pickup of a neutral (but readily ionized) adatom during impact, followed by delocalization of the adatom's valence electron within the cluster and the subsequent collision-induced fragmentation of the cluster into charged pieces. This process could be of practical use in, for example, charge-pair generation and surface analysis; it may also be relevant to atmospheric ionization processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spectra of positive and negative SO2 cluster fragments.

Similar content being viewed by others

References

  1. Vostrikov, A. A., Dubov, D. Yu. & Predtechenskiy, M. R. Ionization of water clusters by surface collision. Chem. Phys. Lett. 139, 124–128 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Vostrikov, A. A. & Dubov, D. Yu. Surface induced ionization of neutral water clusters. Z. Phys. D 20, 61–63 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Vostrikov, A. A. et al. Ionization of water clusters by collision with surface. Z. Phys. D 40, 542–545 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Andersson, P. U. & Pettersson, J. B. C. Ionization of water clusters by collisions with graphite surfaces. Z. Phys. D 41, 57–62 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Christen, W., Kompa, K.-L., Schröder, H. & Stülpnagel, H. Ionization of SO2-clusters by scattering from surfaces. Ber. Bunsenges. Phys. Chem. 96, 1197–1200 (1992).

    Article  CAS  Google Scholar 

  6. Hagena, O. F. & Obert, W. Cluster formation in expanding supersonic jets: effect of pressure, temperature, nozzle size and test gas. J. Chem. Phys. 56, 1793–1802 (1972).

    Article  ADS  CAS  Google Scholar 

  7. Chandezon, F., Huber, B. & Ristori, C. Anew-regime Wiley-McLaren time-of-flight mass spectrometer. Rev. Sci. Instrum. 65, 3344–3353 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Gmelin Handbuch Schwefel, Ergänzungsband 3, 226 (Springer, Berlin, (1980).

  9. Lee, G. H. et al. Negative ion photoelectron spectroscopy of solvated electron cluster anions, (H2O)nand (NH3)n. Z. Phys. D 20, 9–12 (1991).

    Article  ADS  CAS  Google Scholar 

  10. Rothe, E. W., Tang, S. Y. & Reck, P. G. Measurement of electron affinities of O3, SO2, and SO3by collisional ionization. J. Chem. Phys. 62, 3829–3831 (1975).

    Article  ADS  CAS  Google Scholar 

  11. Becker, C. H. & Gillen, K. T. Surface analysis of contaminated GaAs: Comparison of new laser-based techniques with SIMS. J. Vac. Sci. Technol. A 3, 1347–1349 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Tang, I. N., Lian, M. S. & Castleman, A. W. J Mass spectrometric study of gas-phase clustering reactions: Hydration of the monovalent strontium ion. J. Chem. Phys. 65, 4022–4027 (1976).

    Article  ADS  CAS  Google Scholar 

  13. Donnelly, S. G. & Farrar, J. M. Size-dependent photodissociation cross sections for Sr+(NH3)n, n = 3–6: Rydberg state formation and electron transfer. J. Chem. Phys. 98, 5450–5459 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Weinheimer, C. J. & Lisy, J. M. Vibrational and unimolecular dissociation of mixed solvent cluster ions: Na+(CH3)2CO)n(CH3OH)m. Chem. Phys. 239, 357–368 (1998).

    Article  CAS  Google Scholar 

  15. Ohshimo, K., Tsunoyama, H., Yamakita, Y., Misaizu, F. & Ohno, K. Photoionization and density functional study of clusters of alkali metal atoms solvated with acetonitrile molecules, M(CH3CN)n(M = Li and Na). Chem. Phys. Lett. 301, 356–364 (1999).

    Article  ADS  CAS  Google Scholar 

  16. Takasu, R., Misaizu, F., Hashimoto, K. & Fuke, K. Microscopic solvation process of alkali atoms in finite clusters: photoelectron and photoionization studies of M(NH3)nand M(H2O)n(M = Li, Li, Ma). J. Phys. Chem. A 101, 3078–3087 (1997).

    Article  CAS  Google Scholar 

  17. Hertel, I. V., Hüglin, C., Nitsch, C. & Schulz, C. P. Photoionization of Na(NH3)nand Na(H2O)nclusters: a step towards the liquid phase? Phys. Rev. Lett. 67, 1767–1770 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Barnett, R. N. & Landman, U. Hydration of sodium in water clusters. Phys. Rev. Lett. 70, 1775–1778 (1993).

    Article  ADS  CAS  Google Scholar 

  19. Kim, K. S. et al. The nature of a wet electron. Phys. Rev. Lett. 76, 956–959 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Feller, D., Glendening, E. D., Kendall, R. A. & Peterson, K. A. An extended basis set ab initio study of Li+(H2O)n, n = 1–6. J. Chem. Phys. 100, 4981–4997 (1994).

    Article  ADS  CAS  Google Scholar 

  21. Mosyak, A. A., Prezhdo, O. V. & Rossky, P. J. Solvation dynamics of an excess electron in methanol and water. J. Chem. Phys. 109, 6390–6395 (1998).

    Article  ADS  CAS  Google Scholar 

  22. Rips, I. Electron solvation dynamics in polar liquids. Chem. Phys. Lett. 245, 79–84 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Jortner, J. Cluster size effects. Z. Phys. D 24, 247–275 (1992).

    Article  ADS  CAS  Google Scholar 

  24. Christen, W., Even, U., Raz, T. & Levine, R. D. Collisional energy loss in cluster surface impact: Experimental, model, and simulation studies of some relevant factors. J. Chem. Phys. 108, 10262–10273 (1998).

    Article  ADS  CAS  Google Scholar 

  25. Svanberg, M., Ming, L., Markovic, N. & Pettersson, J. B. C. Collision dynamics of large water clusters. J. Chem. Phys. 108, 5888–5897 (1998).

    Article  ADS  CAS  Google Scholar 

  26. MacGorman, D. R. & Rust, W. D. The Electrical Nature of Storms 32 (Oxford Univ. Press, New York, (1998).

    Google Scholar 

  27. Pruppacher, H. R. & Klett, J. D. Microphysics of Clouds and Precipitation 813–814 (Kluwer Academic, Dordrecht, (1996).

    Google Scholar 

  28. Di Palma, T. M., Latini, A., Satta, M. & Giardini Guidoni, A. Molecular beam studies of ammonia clustered with metals produced by pulsed laser reactive ablation. Int. J. Mass Spectrom. 179/180, 319–326 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. D. Levine for discussions, and H.-J. Schmidtke for contributions to the early stage of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Schröder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gebhardt, C., Schröder, H. & Kompa, KL. Surface impact ionization of polar-molecule clusters through pickup of alkali atoms. Nature 400, 544–547 (1999). https://doi.org/10.1038/22984

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/22984

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing