Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

HIRA, a mammalian homologue of Saccharomyces cerevisiae transcriptional co-repressors, interacts with Pax3

Abstract

HIRA maps to the DiGeorge/velocardiofacial syndrome critical region (DGCR) at 22q11 (Refs 1,2) and encodes a WD40 repeat protein similar to yeast Hir1p and Hir2p. These transcriptional co-repressors regulate cell cycle-dependent histone gene transcription3, possibly by remodelling local chromatin structure. We report an interaction between HIRA and the transcription factor Pax3. Pax3 haploinsufficiency results in the mouse splotch and human Waardenburg syndrome (WSI and WSIII) phenotypes. Mice homozygous for Pax3 mutations die in utero with a phenocopy of DGS, or neonatally with neural tube defects. HIRA was also found to interact with core histones. Thus, altered stoichiometry of complexes containing HIRA may be important for the development of structures affected in WS and DGS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HIRA interacts with Pax3, Pax7 and histone H3F3B in vitro.
Figure 2: Mapping the Pax3-binding domain within HIRA.
Figure 3: Co-immunoprecipitation of Pax3 and HIRA from 293 transfected cells.
Figure 4: Co-immunoprecipitation of Pax3 and Hira from whole mouse embryos.
Figure 5: Hira and Pax3 are expressed in neural crest explants.

Similar content being viewed by others

References

  1. Halford, S. et al. Isolation of a putative transcriptional regulator from the region of 22q11 deleted in DiGeorge Syndrome, Shprintzen syndrome and familial congenital heart disease. Hum. Mol. Genet. 2, 2099–2107 (1993).

    Article  CAS  Google Scholar 

  2. Lamour, V. et al. A human homolog of the S. cerevisiae HIR1 and HIR2 transcriptional repressors cloned from the DiGeorge syndrome critical region. Hum. Mol. Genet. 4, 791–799 (1995).

    Article  CAS  Google Scholar 

  3. Spector, M.S., Raff, A., DeSilva, H., Lee, K. & Osley, M.A. Hir1p and Hir2p function as transcriptional corepressors to regulate histone gene transcription in the Saccharomyces cerevisiae cell cycle. Mol. Cell. Biol. 17, 545 –552 (1997).

    Article  CAS  Google Scholar 

  4. Dallapiccola, B., Pizzuti, A. & Novelli, G. How many breaks do we need to CATCH on 22q11? Am. J. Hum. Genet. 59, 7–11 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kurahashi, H. et al. Deletion mapping of 22q11 in CATCH22 syndrome: identification of a second critical region. Am. J. Hum. Genet. 58, 1377–1881 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Rizzu, P. et al. Cloning and comparative mapping of a gene deleted in DiGeorge and velocardiofacial syndromes conserved in the C.elegans genome. Mamm. Genome 7, 639–643 (1996).

    Article  CAS  Google Scholar 

  7. Carlson, C. et al. Molecular definition of 22q11 deletions in 151 VCFS patients: integration within a 10kb physical map. Am. J. Hum. Genet. 61, 620–629 (1997).

    Article  CAS  Google Scholar 

  8. Budarf, M.L. & Emanuel, B.S. Progress in the autosomal segmental aneusomy syndromes (SASs): single or multi-locus disorders? Hum. Mol. Genet. 6, 1657–1665 (1997).

    Article  CAS  Google Scholar 

  9. Kirby, M.L. & Waldo, K.L. Role of the neural crest in congenital heart disease. Circulation 82, 332– 340 (1990).

    Article  CAS  Google Scholar 

  10. Manley, N. & Capecchi, M.R. The role of Hoxa-3 in mouse thymus and thyroid development. Development 121, 1989–2003 (1995).

    CAS  PubMed  Google Scholar 

  11. Roberts, C., Daw, S., Halford, S. & Scambler, P.J. Cloning and Developmental Expression Analysis of Chick Hira, a candidate gene for DiGeorge syndrome. Hum. Mol. Genet. 6, 237– 246 (1997).

    Article  CAS  Google Scholar 

  12. Wilming, L.G., Snoeren, C.A.S., van Rijswijk, A., Grosveld, F. & Meijers, C. The murine homologue of HIRA, a DiGeorge syndrome candidate gene, is expressed in embryonic structures affected in CATCH22 patients. Hum. Mol. Genet. 6, 247–258 (1997).

    Article  CAS  Google Scholar 

  13. Lorain, S. et al. Core histones and HIRIP3, a novel histone-binding protein, directly interact with the WD repeat protein HIRA. Mol. Cell. Biol. in press (1998).

  14. Goulding, M.D., Chalepakis, G., Deutsch, E., Erselius, J.R. & Gruss, P. Pax-3, a novel murine DNA binding protein expressed during early embryogenesis. EMBO J. 10, 1135–1147 (1991).

    Article  CAS  Google Scholar 

  15. Zappavigna, V., Falciola, L., Citterich, M.H., Mavilio, F. & Bianchi, M.E. HMG1 interacts with Hox proteins and enhances their DNA binding and transcriptional activation. EMBO J. 15, 5981–4991 ( 1996).

    Article  Google Scholar 

  16. Jostes, B., Walther, C. & Gruss, P. The murine paired box gene, Pax7, is expressed specifically during the development of the nervous and muscular system. Mech. Dev. 33, 27–38 ( 1991).

    Article  Google Scholar 

  17. Mansouri, A., Stoykova, A., Torres, M. & Gruss, P. Dysgenesis of cephalic neural crest derivatives in Pax7-/- mutant mice. Development 122, 831–838 (1996).

    CAS  PubMed  Google Scholar 

  18. Conway, S.J., Henderson, D.J. & Copp, A.J. Pax3 is required for cardiac neural crest migration in the mouse: evidence from the splotch (Sp2H) mutant. Development 124, 505–514 ( 1997).

    CAS  PubMed  Google Scholar 

  19. Read, A.P. & Newton, V.E. Waardenburg syndrome. J. Med. Genet. 34, 656–665 (1997).

    Article  CAS  Google Scholar 

  20. Franz, T. Persistent truncus arteriosus in the Splotch mutant mouse. Anat. Embryol. 180, 457–464 ( 1989).

    Article  CAS  Google Scholar 

  21. Zlotogora, J., Lerer, I., Bar-David, S., Ergaz, Z. & Abeliovich, D. Homozygosity for Waardenburg syndrome. Am. J. Hum. Genet. 56, 1173–1178 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Steel, K.P. & Smith, R.J. Normal hearing in Splotch (Sp/+), the mouse homologue of Waardenburg syndrome type I. Nature Genet. 2, 75–79 (1992 ).

    Article  CAS  Google Scholar 

  23. Daw, S.C.M. et al. A common region of 10p deleted in DiGeorge and velo-cardio-facial syndrome. Nature Genet. 13, 458– 460 (1996).

    Article  CAS  Google Scholar 

  24. Edmundson, D.G., Smith, M.M. & Roth, S.Y. Repression domain of the yeast global repressor Tup1 interacts directly with histones H3 and H4. Genes Dev. 10, 1247–1259 (1996).

    Article  Google Scholar 

  25. Gould, A. Functions of mammalian Polycomb group and trithorax group related genes. Curr. Opin. Genet. Dev. 7, 488– 494 (1997).

    Article  CAS  Google Scholar 

  26. Hollenberg, S.M., Sternglanz, R., Cheng, P.F. & Weintraub, H. Identification of a new family of tissue-specific basic helix-loop-helix proteins with a two-hybrid system. Mol. Cell. Biol. 15, 3813–3822 (1995).

    Article  CAS  Google Scholar 

  27. Bours, V. et al. The oncoprotein BCL-3 directly transactivates through kappaB motifs via association with DNA-binding p50b homodimers. Cell 72, 729–739 (1993).

    Article  CAS  Google Scholar 

  28. Harlow, E. & Lane, D. Antibodies: A Laboratory Manual. (Cold Spring Harbor Laboratory, New York, 1988).

    Google Scholar 

  29. Moase, C.E. & Trasler, D.G. Delayed neural crest emigration from Sp and Spd mouse neural tube explants. Teratology 42, 171–182 ( 1990).

    Article  CAS  Google Scholar 

  30. Chalepakis, G., Jones, F.S., Edelman, G.M. & Gruss, P. Pax3 contains domains for transcription activation and transcription inhibition. Proc. Natl Acad. Sci. USA 91, 12745– 12749 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank A. Copp and D. Henderson for Pax3 antibodies, the Pax3-pClneo construct and their generous help. S. Hollenberg supplied two-hybrid reagents, protocols and advice. C. Meijers kindly provided anti-Hira antibody. This work was supported by the British Heart Foundation, the Birth Defects Foundation and MRC (UK), the Ligue Nationale contre le Cancer, AFM, ARC (France) and NATO and the Human Frontier Science Program (UK and France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Scambler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magnaghi, P., Roberts, C., Lorain, S. et al. HIRA, a mammalian homologue of Saccharomyces cerevisiae transcriptional co-repressors, interacts with Pax3. Nat Genet 20, 74–77 (1998). https://doi.org/10.1038/1739

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/1739

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing