Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The large-scale smoothness of the Universe

Abstract

The Universe is inhomogeneous — and essentially fractal — on the scale of galaxies and clusters of galaxies, but most cosmologists believe that on larger scales it becomes isotropic and homogeneous: this is the ‘cosmological principle’. This principle was first adopted when observational cosmology was in its infancy, and was then little more than a conjecture. The data now available offer a quantitative picture of the gradual transition from small-scale fractal behaviour to large-scale homogeneity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The distribution of 2 million galaxies with blue magnitude 17 bj 20.5 shown in an equal-area projection centred on the south Galactic pole.
Figure 2: The redshift distribution of more than 20,000 galaxies, from the Las Campanas redshift survey11.
Figure 3: A compilation of density fluctuations on different scales from various observations.
Figure 4: The fractal correlation dimension D2 versus length scale R.

Similar content being viewed by others

References

  1. Mandelbrot, B. B. The Fractal Geometry of Nature(Freeman, New York, ( 1983)).

    Book  Google Scholar 

  2. Mandelbrot, B. B. in Current Topics in Astrofundamental Physics: Primordial Cosmology(eds Sánchez, N. & Zichichi, A.) 583–602 (Kluwer, Dordrecht, (1998)).

    Book  Google Scholar 

  3. Coleman, P. H., Pietronero, L. & Sanders, R. H. Absence of any characteristic correlation length in the CfA galaxy catalogue. Astron. Astrophys. 200, L32–L34 (1988).

    ADS  Google Scholar 

  4. Pietronero, L., Montuori, M. & Sylos-Labini, F. On the fractal structure of the visible universe.In Critical Dialogues in Cosmology(ed. Turok, N.) 24– 49 (World Scientific, Singapore, (1997)).

  5. Sylos Labini, F., Montuori, M. & Pietronero, L. Scale-invariance of galaxy clustering. Phys. Rep. 293, 61–226 ( 1998).

    Article  ADS  Google Scholar 

  6. Borgani, S. Scaling in the universe. Phys. Rep. 251, 2–152 (1995).

    Article  ADS  Google Scholar 

  7. Davis, M. Is the universe homogeneous on large scales?In Critical Dialogs in Cosmology(ed. Turok, N.) 13–23 (World Scientific, Singapore, (1997)).

  8. Peebles, P. J. E. The Large-Scale Structure of the Universe(Princeton Univ. Press, (1980)).

    Google Scholar 

  9. Peebles, P. J. E. Principles of Physical Cosmology(Princeton Univ. Press., ( 1993)).

    Google Scholar 

  10. Maddox, S. J., Efstathiou, G., Sutherland, W. J. & Loveday, J. Galaxy correlations on large scales. Mon. Not. R. Astron. Soc. 242, 43P–47P (1990).

    Article  ADS  Google Scholar 

  11. Shectman, S. A. et al . The Las Campanas Redshift Survey. Astrophys. J. 470, 172–188 ( 1996).

    Article  ADS  Google Scholar 

  12. Baugh, C. M. & Efstathiou, G. The three-dimensional power spectrum measured from the APM Galaxy Survey-1. Use of the angular correlation function. Mon. Not. R. Astron. Soc. 265, 145– 156 (1993).

    Article  ADS  Google Scholar 

  13. Baugh, C. M. & Efstathiou, G. The three-dimensional power spectrum measured from the APM Galaxy Survey-2. Use of the two-dimensional power spectrum. Mon. Not. R. Astron. Soc. 267, 323– 332 (1994).

    Article  ADS  Google Scholar 

  14. Bardeen, J. M., Bond, J. R., Kaiser, N. & Szalay, A. S. The statistics of peaks of Gaussian random fields. Astrophys. J. 304, 15– 61 (1986).

    Article  ADS  CAS  Google Scholar 

  15. Abell, G. O. The distribution of rich clusters of galaxies. Astrophys. J. Suppl. 3, 211–288 ( 1958).

    Article  ADS  Google Scholar 

  16. Ebeling, H. et al. Properties of the X-ray-brightest Abell-type clusters of galaxies (XBACs) from ROSAT All-Sky Survey data-I. The sample. Mon. Not. R. Astron. Soc. 281, 799–829 (1996).

    Article  ADS  Google Scholar 

  17. Scaramella, R. Mass fluctuations on 600/h Mpc — A result from clusters of galaxies. Astrophys. J. 390, L57– L60 (1992).

    Article  ADS  Google Scholar 

  18. Scaramella, R. et al . The ESO Slice Project [ESP] galaxy redshift survey. V. Evidence for a D=3 sample dimensionality. Astron. Astrophys. 334, 404–408 (1998).

    ADS  Google Scholar 

  19. Broadhurst, T. J., Ellis, R. S., Koo, D. C. & Szalay, A. S. Large-scale distribution of galaxies at the Galactic poles. Nature 343, 726– 728 (1990).

    Article  ADS  Google Scholar 

  20. Landy, S. D. et al. The two-dimensional power spectrum of the Las Campanas Redshift Survey: Detection of excess power on 100 h−1 Mpc scales. Astrophys. J. 456, L1– L4 (1996).

    Article  ADS  Google Scholar 

  21. Kaiser, N. & Peacock, J. A. Power-spectrum analysis of one-dimensional redshift surveys. Astrophys. J. 379, 482– 506 (1991).

    Article  ADS  Google Scholar 

  22. Einasto, J. et al. A120-Mpc periodicity in the three-dimensional distribution of galaxy superclusters. Nature 385, 139– 141 (1997).

    Article  ADS  CAS  Google Scholar 

  23. Webster, A. The clustering of radio sources. I — The theory of power-spectrum analysis. II — The 4C, GB and MC1 surveys. Mon. Not. R. Astron. Soc. 175, 61–83 ( 1976).

    Article  ADS  Google Scholar 

  24. Condon, J. J. in New Horizons from Multi-wavelength Sky Surveys(eds McLean, B. J. et al.) 19–25 (Proc. IAU Symp. 179, Kluwer, Dordrecht, (1998)).

    Google Scholar 

  25. Shaver, P. A. & Pierre, M. Large-scale anisotropy in the sky distribution of extragalactic radio sources. Astron. Astrophys. 220, 35–41 ( 1989).

    ADS  Google Scholar 

  26. Benn, C. R. & Wall, J. V. Structure on the largest scales: constraints from the isotropy of radio source counts. Mon. Not. R. Astron. Soc. 272, 678–698 (1995).

    Article  ADS  Google Scholar 

  27. Kooiman, B. L., Burns, J. O. & Klypin, A. A. Two-point angular correlation function for the Green Bank 4.85 GHz Sky Survey. Astrophys. J. 448, 500–509 (1995).

    Article  ADS  Google Scholar 

  28. Sicotte, H. Large-scale Clustering of Radio Sources from the Green Bank 1987 Survey.Thesis, Princeton Univ.((1995)).

    Google Scholar 

  29. Loan, A. J., Wall, J. V. & Lahav, O. The correlation function of radio sources. Mon. Not. R. Astron. Soc. 286, 994–1002 (1997).

    Article  ADS  Google Scholar 

  30. Cress, C. M., Helfand, D. J., Becker, R. H., Gregg, M. D. & White, R. L. The angular two-point correlation function for the FIRST radio survey. Astrophys. J. 473 , 7–14 (1996).

    Article  ADS  Google Scholar 

  31. Magliocchetti, M., Maddox, S. J., Lahav, O. & Wall, J. V. Variance and skewness in the FIRST survey. Mon. Not. R. Astron. Soc. 300, 257 –268 (1998).

    Article  ADS  Google Scholar 

  32. Baleisis, A., Lahav, O., Loan, A. J. & Wall, J. V. Searching for large scale structure in deep radio surveys. Mon. Not. R. Astron. Soc. 297 , 545–558 (1998).

    Article  ADS  Google Scholar 

  33. Boldt, E. A. The cosmic X-ray background. Phys. Rep. 146, 215–257 (1987).

    Article  ADS  CAS  Google Scholar 

  34. Fabian, A. C. & Barcons, X. The origin of the X-ray background. Annu. Rev. Astron. Astrophys. 30, 429– 456 (1992).

    Article  ADS  Google Scholar 

  35. Rees, M. in Objects of High Redshift(eds Abell, G. O. & Peebles, P. J. E.) 207–224 (Proc. IAU symp. 92, Reidel, Dordrecht, (1980)).

    Book  Google Scholar 

  36. Shafer, R. A. Spatial Fluctuations in the Diffuse Cosmic X-ray Background.Thesis, NASA Goddard Space Flight Center((1983)).

    Google Scholar 

  37. Boughn, S. P., Crittenden, R. G. & Turok, N. G. Correlations between the cosmic X-ray and microwave backgrounds: constraints on a cosmological constant. New Astron. 3, 275–291 ( 1998).

    Article  ADS  Google Scholar 

  38. Lahav, O., Piran, T. & Treyer, M. A. The X-ray background as a probe of density fluctuations at high redshift. Mon. Not. R. Astron. Soc. 284, 499–506 (1997).

    Article  ADS  Google Scholar 

  39. Barcons, X., Fabian, A. C. & Carrera, F. J. Measuring the power spectrum of density fluctuations at intermediate redshift with X-ray background observations. Mon. Not. R. Astron. Soc. 293, 60–70 (1998).

    Article  ADS  Google Scholar 

  40. Jahoda, K. Present epoch plus — an X-ray survey for cosmology. Astron. Nachrichten 319, 129–132 (1998).

    Article  ADS  Google Scholar 

  41. Boughn, S. P. Cross-correlation of the 2–10 keV X-ray background with radio sources: Constraining the large-scale structure of the X-ray background. Astrophys. J. 499, 533–541 (1998).

    Article  ADS  Google Scholar 

  42. Treyer, M. et al. Large scale fluctuations in the X-Ray Background. Astrophys. J. 509, 531–536 (1998).

    Article  ADS  Google Scholar 

  43. Fry, J. N. The evolution of bias. Astrophys. J. 461, L65–L68 (1996).

    Article  ADS  Google Scholar 

  44. Shanks, T. & Boyle, B. J. QSO clustering — I. Optical surveys in the redshift range 0.3 < z < 2.2. Mon. Not. R. Astron. Soc. 271, 753–772 (1994).

    Article  ADS  Google Scholar 

  45. Steidel, C. C. et al . Alarge structure of galaxies at redshift z approximately 3 and its cosmological implications. Astrophys. J. 492 , 428–438 (1998).

    Article  ADS  CAS  Google Scholar 

  46. Webb, J. K. & Barcons, X. Asearch for inhomogeneities in the Lyman-alpha forest. Mon. Not. R. Astron. Soc. 250, 270–277 (1991).

    Article  ADS  CAS  Google Scholar 

  47. Villumsen, J. V. Weak lensing by large-scale structure in open, flat and closed universes. Mon. Not. R. Astron. Soc. 281, 369– 383 (1996).

    Article  ADS  Google Scholar 

  48. Kaiser, N. Weak lensing and cosmology. Astrophys. J. 498, 26–42 (1998).

    Article  ADS  Google Scholar 

  49. Strauss, M. A., Yahil, A., Davis, M., Huchra, J. P. & Fisher, K. Aredshift survey of IRAS galaxies. V — The acceleration on the Local Group. Astrophys. J. 397, 395–419 (1992).

    Article  ADS  Google Scholar 

  50. Webster, M., Lahav, O. & Fisher, K. Wiener reconstruction of the IRAS 1.2-Jy galaxy redshift survey: cosmographical implications. Mon. Not. R. Astron. Soc. 287, 425–444 (1997).

    Article  ADS  Google Scholar 

  51. Riess, A. G., Davis, M., Baker, J. & Kirshner, R. P. The velocity field from type Ia supernovae matches the gravity field from galaxy surveys. Astrophys. J. 488, L1–L6 ( 1997).

    Article  ADS  Google Scholar 

  52. Sachs, R. K. & Wolfe, A. M. Perturbations of a cosmological model and angular variations of the microwave background. Astrophys. J. 147, 73–90 ( 1967).

    Article  ADS  Google Scholar 

  53. White, M., Scott, D. & Silk, J. Anisotropies in the cosmic microwave background. Annu. Rev. Astron. Astrophys. 32, 319–370 ( 1994).

    Article  ADS  Google Scholar 

  54. Scott, D., Silk, J. & White, M. From microwave anisotropies to cosmology. Science 268 , 829–835 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Hu, W., Sugiyama, N. & Silk, J. The physics of microwave background anisotropies. Nature 386, 37–43 ( 1997).

    Article  ADS  CAS  Google Scholar 

  56. Bennett, C. L., Turner, M. S. & White, M. The cosmic rosetta stone. Phys. Today 50, 32–38 (1997).

    Article  Google Scholar 

  57. Gawiser, E. & Silk, J. Extracting primordial density fluctuations. Science 280, 1405–1411 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Webster, M. et al. Joint estimation of cosmological parameters from CMB and IRAS data. Astrophys. J. 509, L65– L68 (1998).

    Article  ADS  Google Scholar 

  59. Stoeger, W. R., Maartens, R. & Ellis, G. F. R. Proving almost-homogeneity of the universe: An almost Ehlers-Green-Sachs theorem. Astrophys. J. 443 , 1–5 (1995).

    Article  ADS  Google Scholar 

  60. Seljak, U. Gravitational lensing effect on cosmic microwave background anisotropies.: A power spectrum approach. Astrophys. J. 463, 1–7 (1996).

    Article  ADS  Google Scholar 

  61. Lynden-Bell, D. et al . Spectroscopy and photometry of elliptical galaxies. V — galaxy streaming toward the new supergalactic center. Astrophys. J. 326, 19–49 ( 1988).

    Article  ADS  Google Scholar 

  62. Dekel, A. Dynamics of cosmic flows. Annu. Rev. Astron. Astrophys. 32, 371–418 (1994).

    Article  ADS  Google Scholar 

  63. Strauss, M. A. & Willick, J. A. The density and peculiar velocity fields of nearby galaxies. Phys. Rep. 261, 271–431 (1995).

    Article  ADS  Google Scholar 

  64. Kolatt, T. & Dekel, A. Large-scale power spectrum from peculiar velocities. Astrophys. J. 479, 592– 605 (1997).

    Article  ADS  Google Scholar 

  65. Lauer, T. R. & Postman, M. The motion of the Local Group with respect to the 15000 kilometer per second Abell cluster inertial frame. Astrophys. J. 425, 418–438 (1994).

    Article  ADS  Google Scholar 

  66. Guzzo, L., Iovino, A., Chincarini, G., Giovanelli, R. & Haynes, M. P. Scale-invariant clustering in the large-scale distribution of galaxies. Astrophys. J. 382, L5–L9 (1991).

    Article  ADS  Google Scholar 

  67. Martínez, V. J. & Coles, P. Correlations and scaling in the QDOT redshift survey. Astrophys. J. 437, 550– 555 (1994).

    Article  ADS  Google Scholar 

  68. Lemson, G. & Sanders, R. H. On the use of the conditional density as a description of galaxy clustering. Mon. Not. R. Astron. Soc. 252, 319–328 ( 1991).

    Article  ADS  Google Scholar 

  69. Cappi, A., Benoist, C., Da Costa, L. N. & Maurogordato, S. Is the Universe a fractal? Results from the Southern Sky Redshift Survey 2. Astron. Astrophys. 335, 779– 788 (1998).

    ADS  CAS  Google Scholar 

  70. Martinez, V. J., Pons-Borderia, M. -J., Moyeed, R. A. & Graham, M. J. Searching for the scale of homogeneity. Mon. Not. R. Astron. Soc. 298, 1212–1222 ( 1998).

    Article  ADS  Google Scholar 

  71. Guzzo, L. Is the universe homogeneous? (On large scales). New Astron. 2, 517–532 (1997).

    Article  ADS  Google Scholar 

  72. Calzetti, D., Giavalisco, M., Ruffini, R., Taraglio, S. & Bahcall, N. A. Clustering of galaxies: Fractal or homogeneous infrastructure? Astron. Astrophys. 245 , 1–6 (1991).

    ADS  Google Scholar 

  73. Maartens, R., Ellis, G. F. R. & Stoeger, W. R. Anisotropy and inhomogeneity of the universe from Δ T/T. Astron. Astrophys. 309, L7– L10 (1996).

    ADS  Google Scholar 

  74. Ellis, G. F. R. Alternatives to the Big Bang. Annu. Rev. Astron. Astrophys. 22, 157–184 (1984).

    Article  ADS  Google Scholar 

  75. Saunders, W., Rowan-Robinson, M. & Lawrence, A. The spatial correlation function of IRAS galaxies on small and intermediate scales. Mon. Not. R. Astron. Soc. 258, 134–146 (1992).

    Article  ADS  Google Scholar 

  76. Bahcall, N. A. Large-scale structure in the universe indicated by galaxy clusters. Annu. Rev. Astron. Astrophys. 26, 631– 686 (1988).

    Article  ADS  Google Scholar 

  77. Kaiser, N. On the spatial structures of Abell clusters. Astrophys. J. 284, L9–L12 (1984).

    Article  ADS  Google Scholar 

  78. Dressler, A. Galaxy morphology in rich clusters — Implications for the formation and evolution of galaxies. Astrophys. J. 236, 351–365 (1980).

    Article  ADS  Google Scholar 

  79. Loveday, J., Maddox, S. J., Efstathiou, G. & Peterson, B. A. The Stromlo-APM redshift survey. 2: Variation of galaxy clustering with morphology and luminosity. Astrophys. J. 442, 457– 468 (1995).

    Article  ADS  Google Scholar 

  80. Hermit, S. et al. The two-point correlation function and morphological segregation in the Optical Redshift Survey. Mon. Not. R. Astron. Soc. 283, 709–720 (1996).

    Article  ADS  Google Scholar 

  81. Dekel, A. & Rees, M. J. Physical mechanisms for biased galaxy formation. Nature 326, 455– 462 (1987).

    Article  ADS  Google Scholar 

  82. Babul, A. & White, S. D. M. Quasar-modulated galaxy clustering in a cold dark matter universe. Mon. Not. R. Astron. Soc. 253, 31P–34P (1991).

    Article  ADS  Google Scholar 

  83. Coles, P. Galaxy formation with a local bias. Mon. Not. R. Astron. Soc. 262, 1065–1075 (1993).

    Article  ADS  Google Scholar 

  84. Bower, R. G.,, Coles, P., Frenk, C. S. & White, S. D. M. Cooperative galaxy formation and large-scale structure. Astrophys. J. 405, 403–412 (1993).

    Article  ADS  Google Scholar 

  85. Kauffmann, G., Nusser, A. & Steinmetz, M. Galaxy formation and large-scale bias. Mon. Not. R. Astron. Soc. 286, 795–811 (1997).

    Article  ADS  Google Scholar 

  86. Bagla, J. Evolution of galaxy clustering. Mon. Not. R. Astron. Soc. 299, 417–424 (1998).

    Article  ADS  Google Scholar 

  87. Dekel, A. & Lahav, O. Stochastic nonlinear galaxy biasing. Astrophys. J.(in the press); also as preprint astro-ph/9806193 at 〈http://xxx.lanl.gov〉 ((1998)).

  88. Szalay, A. S. & Schramm, D. N. Are galaxies are more strongly correlated than clusters? Nature 314, 718 –719 (1985).

    Article  ADS  Google Scholar 

  89. Martinez, V. J., Jones, B. J. T., Dominguez-Tenreiro, R. & Van De Weygaert, R. Clustering paradigms and multifractal measures. Astrophys. J. 357, 50–61 (1990).

    Article  ADS  Google Scholar 

  90. Smoot, G. F. et al. Structure in the COBE differential microwave radiometer first-year maps. Astrophys. J. 396, L1– L5 (1992).

    Article  ADS  Google Scholar 

  91. Bennett, C. L. et al . Four-year COBE DMR cosmic microwave background observations: maps and basic results. Astrophys. J. 464, L1–L4 (1996).

    Article  ADS  Google Scholar 

  92. Hancock, S. et al. Studies of cosmic microwave background structure at Dec.=+40 deg - II. Analysis and cosmological interpretation. Mon. Not. R. Astron. Soc. 289, 505–514 (1997).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Baleisis, E. Gawiser, L. Guzzo and M. Treyer for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelvin K. S. Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, K., Lahav, O. & Rees, M. The large-scale smoothness of the Universe. Nature 397, 225–230 (1999). https://doi.org/10.1038/16637

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/16637

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing