Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The protein MAP-1B links GABAC receptors to the cytoskeleton at retinal synapses

Abstract

The ionotropic type-A and type-C receptors for the neurotransmitter γ-aminobutyric acid (GABAA and GABAC receptors) are the principal sites of fast synaptic inhibition in the central nervous system1,2,3, but it is not known how these receptors are localized at GABA-dependent synapses. GABAC receptors, which are composed of ρ-subunits3,4,5,6, are expressed almost exclusively inthe retina of adult vertebrates, where they are enriched on bipolar cell axon terminals7,8,9. Here we show that the microtubule-associated protein 1B (MAP-1B) specifically interacts with the GABAC ρ1 subunit but not with GABAA receptor subunits. Furthermore, GABAC receptors and MAP-1B co-localize at postsynaptic sites on bipolar cell axon terminals. Co-expression of MAP-1B and the ρ1 subunit in COS cells results in a dramatic redistribution of the ρ1 subunit. Our observations suggest a novel mechanism for localizing ionotropic GABA receptors to synaptic sites. This mechanism, which is specific for GABAC but not GABAA receptors, may allow these receptor subtypes, which have distinct physiological and pharmacological properties, to be differentially localized at inhibitory synapses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Specific interaction of the ρ1 intracellular domain with an N-terminal domain of MAP-1B.
Figure 2: Interaction of MAP-1B with the GABAC receptor ρ1 subunit in retinal extracts.
Figure 3: Co-localization of ρ-subunits and MAP-1B immunoreactivity in the retina.
Figure 4: Co-expression of MAP-1B and the ρ1 subunit in COS cells induces redistribution of the ρ1 subunit.

Similar content being viewed by others

References

  1. Macdonald, R. L. & Olsen, R. W. GABAAreceptor channels. Annu. Rev. Neurosci. 17, 569–602 (1994).

    Article  CAS  Google Scholar 

  2. Rabow, L. E., Russek, S. J. & Farb, D. H. From ion currents to genomic analysis: recent advances in GABAAreceptor research. Synapse 21, 189–274 (1995).

    Article  CAS  Google Scholar 

  3. Lukasiewicz, P. D. GABACreceptors in the vertebrae retina. Mol. Neurobiol. 12, 181–194 (1996).

    Article  CAS  Google Scholar 

  4. Polenzani, L., Woodward, R. M. & Miledi, R. Expression of mammalian γ-aminobutyric acid receptors with distinct pharmacology in Xenopus. Proc. Natl Acad. Sci. USA 88, 4318–4322 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Cutting, G. R. et al. Cloning of the γ-aminobutyric acid (GABA) rho1 cDNA: aGABA receptor subunit highly expressed in the retina. Proc. Natl Acad. Sci. USA 88, 2673–2677 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Wang, T. L., Guggino, W. B. & Cutting, G. R. Anovel γ-aminobutyric acid receptor subunit (rho2) cloned from human retina forms bicuculline-insensitive homooligomeric receptors in Xenopus oocytes. J. Neurosci. 14, 6524–6531 (1994).

    Article  CAS  Google Scholar 

  7. Enz, R., Brandstatter, J. H., Hartveit, E., Wassle, H. & Bormann, J. Expression of GABA receptor rho1 and rho2 subunits in the retina and brain of the rat. Eur. J. Neurosci. 7, 1495–1501 (1995).

    Article  CAS  Google Scholar 

  8. Enz, R., Brandstatter, J. H., Hartveit, E., Wassle, H. & Bormann, J. Expression of GABA receptor rho1 and rho2 subunits in the retina and brain of the rat. Eur. J. Neurosci. 7, 1495–1501 (1995).

    Article  CAS  Google Scholar 

  9. Koulen, P., Brandstatter, J. H., Enz, R. & Wassle, H. Synaptic clustering of GABACreceptor ρ-subunits in the rat retina. Eur. J. Neurosci. 10, 115–127 (1998).

    Article  CAS  Google Scholar 

  10. Field, S. & Song, O. Anovel genetic system to detect protein–protein interactions. Nature 340, 245–246 (1989).

    Article  ADS  Google Scholar 

  11. Hammarback, J. A. in Brain Microtubule-associated Proteins: Modifications in Diesease (eds Avila, J., Kosik, K. & Brandt, R.) 1–17 (Harwood, Amsterdam, (1997).

    Google Scholar 

  12. Ulloa, L., Avila, A. & Diaz-Nido, R. in Brain Microtubule-associated Proteins: Modifications in Diesease (eds Avila, J., Kosik, K. & Brandt, R.) 17–33 (Harwood, Amsterdam, (1997).

    Google Scholar 

  13. Lien, L., Feener, C. A., Fischbach, N. & Kunkel, L. M. Cloning of human microtubule-associated protein 1B and the identification of a related gene on chromosome 15. Genomics 22, 273–280 (1994).

    Article  CAS  Google Scholar 

  14. Noble, M., Lewis, S. A. & Cowan, N. The microtubule binding domain of microtubule-associated protein MAP-1B contains a repeated sequence motif unrelated to that of MAP2 and tau. J. Cell. Biol. 109, 3367–3376 (1989).

    Article  CAS  Google Scholar 

  15. Smith, D. B. & Johnson, K. S. Single-step purification of polypeptides expressed in E. coli as fusions with glutathione S-transferase. Gene 67, 31–40 (1988).

    Article  CAS  Google Scholar 

  16. Johnstone, M., Goold, R. G., Fischer, I. & Gordon-Weeks, P. R. The neurofilament antibody RT97 recognises a developmentally regulated phosphorylation epitope on microtubule-associated protein 1B. J. Anat. 191, 229–244 (1997).

    Article  Google Scholar 

  17. Gunther, U. et al. Benzodiazepine-insensitive mice generated by targeted disruption of the γ2 subunit of GABAAreceptors. Proc. Natl Acad. Sci. USA 92, 7749–7753 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Fujii, T., Watanabe, M., Ogoma, Y., Kondo, Y. & Arai, T. Microtubule-associated proteins, MAP 1A and MAP 1B, interact with F-actin in vitro. J. Biochem. 6, 827–829 (1993).

    Article  Google Scholar 

  19. Albrecht, B. E. & Darlison, M. G. Localisation of the ρ1 and ρ2 subunit messenger RNAs in chick retina by in situ hybridization predicts the existence of γ-aminobutyric acid type C receptor subtypes. Neurosci. Letts 189, 155–158 (1995).

    Article  CAS  Google Scholar 

  20. Wyszynski, M. et al. Differential regional expression and ultrastructural localization of α-actinin-2, aputative NMDA-receptor-anchoring protein, in rat brain. J. Neurosci. 18, 1383–1392 (1998).

    Article  CAS  Google Scholar 

  21. Prior, P. et al. Primary structure and alternative splice variants of gephyrin, a putative glycine receptor-tubulin linker protein. Neuron 8, 1161–1170 (1992).

    Article  CAS  Google Scholar 

  22. Tachibana, M. & Kaneko, T. γ-Aminobutyric acid exerts a local inhibitory action on the axon terminal of bipolar cells: evidence for negative feedback from amacrine cells. Proc. Natl Acad. Sci. USA 85, 3501–3505 (1987).

    Article  ADS  Google Scholar 

  23. Kirsch, J., Kuhse, J. & Betz, H. Targeting of glycine receptor subunits to gephyrin-rich domains in transfected human embryonic kidney cells. Mol. Cell. Neurosci. 6, 450–461 (1995).

    Article  CAS  Google Scholar 

  24. Kirsch, J., Wolters, I., Triller, A. & Betz, H. Gephyrin antisense oligonucleotides prevent glycine-receptor clustering in spinal neurons. Nature 366, 745–748 (1993).

    Article  ADS  CAS  Google Scholar 

  25. Connolly, C. N., Wooltorton, J. A., Smart, T. G. & Moss, S. J. Subcellular localization of GABAAreceptors is determined by receptor β subunits. Proc. Natl Acad. Sci. USA 93, 9899–9904 (1996).

    Article  ADS  CAS  Google Scholar 

  26. Connolly, C. N., Krishek, B., McDonald, B. M., Smart, T. G. & Moss, S. J. Assembly and cell surface expression of heteromeric and homomeric γ-aminobutyric acid type A receptors. J. Biol. Chem. 271, 89–96 (1996).

    Article  CAS  Google Scholar 

  27. Li, M., Jan, Y. & Jan, L. Specification of subunit assembly by the hydrophilic amino-terminal domain of the Shaker potassium channel. Science 257, 1225–1229 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank C.-H. Sung for the retinal cDNA library, D. Attwell for help with retinal cultures, and W. Wisden and T. Smart for their comments on the manuscript. This work was supported by the MRC, the Wellcome Trust and the Royal Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Moss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanley, J., Koulen, P., Bedford, F. et al. The protein MAP-1B links GABAC receptors to the cytoskeleton at retinal synapses. Nature 397, 66–69 (1999). https://doi.org/10.1038/16258

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/16258

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing