Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Integration of endoplasmic reticulum signaling in health and disease

Abstract

Alteration in the endoplasmic reticulum processing of cargo molecules by pathogens, or deficiencies in cargo handling by the endoplasmic reticulum machinery in a broad range of diseases including cystic fibrosis, hemochromatosis and neuropathies such as Alzheimer disease demonstrates an unanticipated role of the endoplasmic reticulum in the control of cell fate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Receptors in the ER coordinate gene expression with cell function.
Figure 2: Viral and bacterial pathogens manipulate ER function to escape immune surveillance.
Figure 3: Effect of disorders in protein conformation on ER export.
Figure 4: Integrative processing by the ER.

Similar content being viewed by others

References

  1. Matlack, K.E., Mothes, W. & Rapoport, T.A. Protein translocation: tunnel vision. Cell 92, 381–390 (1998).

    Article  CAS  Google Scholar 

  2. Trombetta, E.S. & Helenius, A. Lectins as chaperones in glycoprotein folding. Curr. Opin. Struct. Biol. 8, 587–592 (1998).

    Article  CAS  Google Scholar 

  3. Liu, Y., Choudhury, P., Cabral, C.M. & Sifers, R.N. Oligosaccharide modification in the early secretory pathway directs the selection of a misfolded glycoprotein for degradation by the proteasome. J. Biol. Chem. 274, 5861–5867 (1999).

    Article  CAS  Google Scholar 

  4. Hammond, C. & Helenius, A. Quality control in the secretory pathway. Curr. Opin. Cell Biol. 7, 523– 529 (1995).

    Article  CAS  Google Scholar 

  5. Chapman, R., Sidrauski, C. & Walter, P. Intracellular signaling from the endoplasmic reticulum to the nucleus. Annu. Rev. Cell. Dev. Biol. 14, 459–485 (1998).

    Article  CAS  Google Scholar 

  6. Pahl, H.L. & Baeuerle, P.A. Endoplasmic reticulum induced signal transduction and gene expression. Trends Cell Biol. 7, 50–55 (1997).

    Article  CAS  Google Scholar 

  7. Harding, H.P., Zhang, Y. & Ron, D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397, 271– 274 (1999).

    Article  CAS  Google Scholar 

  8. Pahl, H.L. & Baeuerle, P.A. The ER-overload response: activation of NF-kB. Trends Cell Biol. 22 63– 67 (1997).

    CAS  Google Scholar 

  9. Wang, X.Z. & Ron, D. Stress-induced phosphorylation and activation of the transcription factor CHOP (Gadd153) by p38 MAP kinase. Science 272, 1347–1349 (1996).

    Article  CAS  Google Scholar 

  10. Batchvarova, N., Wang, X.Z. & Ron, D. Inhibition of adipogenesis by the stress-induced protein CHOP (Gadd153). EMBO J. 14, 4654–4661 (1995).

    Article  CAS  Google Scholar 

  11. Zinszner, H. et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 12, 982–995 (1998).

    Article  CAS  Google Scholar 

  12. Aridor, M. & Balch, W.E. Principles of selective transport: coat complexes hold the key. Trends Cell Biol. 6, 315–320 (1996).

    Article  CAS  Google Scholar 

  13. Aridor, M., Bannykh, S.I., Rowe, T. & Balch, W.E. Cargo can modulate COPII vesicle formation from the endoplasmic reticulum. J. Biol. Chem. 274, 4389–4399 (1999).

    Article  CAS  Google Scholar 

  14. Schekman, R. & Orci, L. Coat proteins and vesicle budding. Science 271, 1526–1533 (1996).

    Article  CAS  Google Scholar 

  15. Springer, S. & Schekman, S. Nucleation of COPII vesicular coat complex by endoplasmic reticulum to Golgi vesicle SNAREs. Science 281, 698–700 (1998).

    Article  CAS  Google Scholar 

  16. Aridor, M., Weissman, J., Bannykh, S., Nouffer, C. & Balch, W.E. Cargo selection by the COPII budding machinery during export from the endoplasmic reticulum. J. Cell Biol. 141, 61–70 (1998).

    Article  CAS  Google Scholar 

  17. Bannykh, S.I., Rowe, T. & Balch, W.E. Organization of endoplasmic reticulum export complexes. J. Cell Biol. 135, 19– 35 (1996).

    Article  CAS  Google Scholar 

  18. Kaiser, C.A. & Schekman, R. Distinct sets of SEC genes govern transport vesicle formation and fusion early in the secretory pathway. Cell 61, 723–733 (1990).

    Article  CAS  Google Scholar 

  19. Saito, Y., Yamanushi, T., Oka, T. & Nakano, A. Identification of SEC12, SED4, truncated SEC16, and EKS1/HRD3 as multicopy suppressors of ts mutants of Sar1 GTPase. J. Biochem. (Tokyo) 125, 130–137 (1999).

    Article  CAS  Google Scholar 

  20. Zhen, L., Baumann, H., Novak, E.K. & Swank, R.T. The signal for retention of the egasyn-glucuronidase complex within the endoplasmic reticulum. Arch. Biochem. 304, 402– 414 (1993).

    Article  CAS  Google Scholar 

  21. Shelness, G.S., Ingram, M.F., Huang, X.F. & DeLozier, J.A. Apolipoprotein B in the rough endoplasmic reticulum: translation, translocation and the initiation of lipoprotein assembly. J. Nutr. 129, 456S–462S (1999).

    CAS  PubMed  Google Scholar 

  22. Baker, E.K., Colley, N.J. & Zuker, C.S. The cyclophilin homolog NinaA functions as a chaperone, forming a stable complex in vivo with its protein target rhodopsin. EMBO J. 13, 4886–4895 (1994).

    Article  CAS  Google Scholar 

  23. Bu, G. & Schwartz, A.L. RAP, a novel type of ER chaperone. Trends Cell Biol. 8, 272– 276 (1998).

    Article  CAS  Google Scholar 

  24. Kuehn, M.J., Herrmann, M. & Schekman, R. COPII-cargo interactions direct protein sorting into ER-derived transport vesicles. Nature 391, 187–190 (1998).

    Article  CAS  Google Scholar 

  25. Nishimura, N. & Balch, W.E. A di-acidic signal required for selective export from the endoplasmic reticulum. Science 277, 556–558 (1997).

    Article  CAS  Google Scholar 

  26. Nishimura, N. et al. A di-acidic (DXE) code directs concentration of cargo during export from the endoplasmic reticulum. J. Biol. Chem. 274, 15937–15946 (1999).

    Article  CAS  Google Scholar 

  27. Fiedler, K. & Rothman, J.E. Sorting determinants in the transmembrane domain of p24 proteins. J. Biol. Chem. 272, 24739–24742 (1997).

    Article  CAS  Google Scholar 

  28. Kappeler, F., Klopfenstein, D.R., Foguet, M., Paccaud, J.P. & Hauri, H.P. The recycling of ERGIC-53 in the early secretory pathway. ERGIC-53 carries a cytosolic endoplasmic reticulum-exit determinant interacting with COPII. J. Biol. Chem. 272, 31801–31808 (1997).

    Article  CAS  Google Scholar 

  29. Bannykh, S., Nishimura, N. & Balch, W.E. Getting into the Golgi. Trends Cell Biol. 8, 21–25 (1998).

    Article  CAS  Google Scholar 

  30. Nichols, W.C. et al. Mutations in the ER-Golgi intermediate compartment protein ERGIC-53 cause combined deficiency of coagulation factors V and VIII. Cell 93, 61–70 (1998).

    Article  CAS  Google Scholar 

  31. White, A.L., Guerra, B. & Lanford, R.E. Influence of allelic variation on apolipoprotein (a) folding in the endoplasmic reticulum. J. Biol. Chem. 272, 5048–5055 (1997).

    Article  CAS  Google Scholar 

  32. Kim, P.S. & Arvan, P. Endocrinopathies in the family of endoplasmic reticulum (ER) storage diseases: disorders of protein trafficking and the role of ER molecular chaperones. Endocr. Rev. 19, 173–202 (1998).

    CAS  PubMed  Google Scholar 

  33. Macintyre, S., Samols, D. & Dailey, P. Two carboxylesterases bind C-reactive protein within the endoplasmic reticulum and regulate its secretion during the acute phase response. J. Biol. Chem. 269, 24496– 24503 (1994).

    CAS  PubMed  Google Scholar 

  34. Kuwana, T., Peterson, P.A. & Karlsson, L. Exit of major histocompatibility complex class II-invariant chain p35 complexes from the endoplasmic reticulum is modulated by phosphorylation. Proc. Natl. Acad. Sci. USA 95, 1056– 1061 (1998).

    Article  CAS  Google Scholar 

  35. Sommer, T. & Wolf, D.H. Endoplasmic reticulum degradation: reverse protein flow of no return. FASEB J. 11, 1227–1233 (1997).

    Article  CAS  Google Scholar 

  36. Brodsky, J.L. & McCracken, A.A. ER-associated and proteasome-mediated protein degradation: how two topologically restricted events came together. Trends Cell Biol. 7, 151– 156 (1997).

    Article  CAS  Google Scholar 

  37. Johnston, J.A., Ward, C.L. & Kopito, R.R. Aggresomes: a cellular response to misfolded proteins. J. Cell Biol. 143, 1883– 1898 (1998).

    Article  CAS  Google Scholar 

  38. Kopito, R.R. Biosynthesis and degradation of CFTR. Physiol. Rev. 79, S167–173 (1999).

    Article  CAS  Google Scholar 

  39. Hardy, J. & Gwinn-Hardy, K. Genetic classification of primary neurodegenerative disease. Science 282, 1075–1079 (1998).

    Article  CAS  Google Scholar 

  40. Gardner, R. et al. Sequence determinants for regulated degradation of yeast 3-hydroxy-3- methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. Mol. Biol. Cell. 9, 2611–2626 (1998).

    Article  CAS  Google Scholar 

  41. Nohturfft, A., Brown, M.S. & Goldstein, J.L. Sterols regulate processing of carbohydrate chains of wild-type SREBP cleavage-activating protein (SCAP), but not sterol-resistant mutants Y298C or D443N. Proc. Natl. Acad. Sci. USA 95, 12848–12853 (1998).

    Article  CAS  Google Scholar 

  42. Ploegh, H.L. Viral strategies of immune evasion. Science 280, 248–253 (1998).

    Article  CAS  Google Scholar 

  43. Margottin, F. et al. A novel human WD protein, h-betaTrCP, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif. Cell 1, 565–574 (1998).

    CAS  Google Scholar 

  44. Yaron, A. et al. Identification of the receptor component of the IkappaBalpha-ubiquitin ligase. Nature 396, 590-4 (1998).

    Article  CAS  Google Scholar 

  45. Doedens, J.R., Giddings, J., T.H. & Kirkegaard, K. Inhibition of endoplasmic reticulum-to-Golgi traffic by poliovirus protein 3A: genetic and ultrastructural analysis. J. Virol. 71, 9054–9064 (1997).

    CAS  PubMed  Google Scholar 

  46. Lord, J.M. & Roberts, L.M. Toxin entry: retrograde transport through the secretory pathway. J. Cell Biol. 140, 733–736 (1998).

    Article  CAS  Google Scholar 

  47. Simpson, J.C., Dascher, C., Roberts, L.M., Lord, J.M. & Balch, W.E. Ricin cytotoxicity is sensitive to recycling between the endoplasmic reticulum and the Golgi complex J. Biol. Chem. 270, 20078–20083 (1995).

    Article  CAS  Google Scholar 

  48. Sandvig, K. et al. Retrograde transport of endocytosed Shiga toxin to the endoplasmic reticulum. Nature 358, 510– 512 (1992).

    Article  CAS  Google Scholar 

  49. Kuhn, L. Iron overload: molecular clues to its cause. Trends Biochem. Sci. 24, 164–166 (1999).

    Article  CAS  Google Scholar 

  50. Qu, D., Teckman, J.H. & Perlmutter, D.H. Alpha 1-antitrypsin deficiency associated liver disease. J. Gastroenterol. Hepatol. 12, 404– 416 (1997).

    Article  CAS  Google Scholar 

  51. Sifers, R.N., Finegold, M.J. & Woo, S.L.C. Molecular biology and genetics of alpha1-antitrypsin deficiency. Semin. Liver Dis. 12, 301– 310 (1992).

    Article  CAS  Google Scholar 

  52. Brooks, D.A. Protein processing: a role in the pathophysiology of genetic disease. FEBS Lett. 409, 115–120 (1997).

    Article  CAS  Google Scholar 

  53. Kukuruzinska, M.A. & Lennon, K. Protein N-glycosylation: molecular genetics and functional significance. Crit Rev. Oral Biol. Med. 9, 415–448 (1998).

    Article  CAS  Google Scholar 

  54. Kalin, N., Claabeta, A., Sommer, M., Puchelle, E. & Tummler, B. DeltaF508 CFTR protein expression in tissues from patients with cystic fibrosis. J. Clin. Invest. 103, 1379–1389 (1999).

    Article  CAS  Google Scholar 

  55. Prockop, D.J. & Kivirikko, K.I. Collagens: molecular biology, diseases, and potentials for therapy. Annu. Rev. Biochem. 64, 403–434 (1995).

    Article  CAS  Google Scholar 

  56. Hodes, M., Pratt, V. & Dlouhy, S. Genetics of Perlizaeus-Merzbacher disease. Devel. Neurosci. 15, 383–394 (1993).

    Article  CAS  Google Scholar 

  57. Gow, A. & Lazzarini, R.A. A cellular mechanism governing the severity of Pelizaeus-Merzbacher disease. Nature Genet. 13, 422–428 (1996).

    Article  CAS  Google Scholar 

  58. Griffiths, I. et al. Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science 280, 1610–1613 (1998).

    Article  CAS  Google Scholar 

  59. Hodes, M.E. & Dlouby, S.R. The proteolipid protein gene: double, double, ....and trouble. Am. J. Genet. 59, 12–15 (1996).

    CAS  Google Scholar 

  60. De Jonghe, P., Timmerman, V., Nelis, E., Martin, J. & Van Broeckhoven, C. Charcot-Marie-Tooth disease and related peripheral neuropathies. J. Periph. Nervous Sys. 2, 370– 387 (1997).

    CAS  Google Scholar 

  61. D'Urso, D., Prior, R., Greiner-Petter, R., Gabreels-Festen, A.A.W.M. & Muller, H.W. Overloaded endoplasmic reticulum-golgi compartments, a possible pathomechanism of peripheral neuropathies caused by mutations of the peripheral myelin protein PMP22. J. Neurosci. 18, 731–740 (1998).

    Article  CAS  Google Scholar 

  62. Pruisner, S.B., Scott, M.R., DeArmond, S.J. & Cohen, F.E. Prion protein biology. Cell 93, 337– 348 (1998).

    Article  Google Scholar 

  63. Kelly, J.W. The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Curr. Opin. Struct. Biol. 8, 101–106 (1998).

    Article  CAS  Google Scholar 

  64. Selkoe, D.J. The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer's disease. Trends Cell Biol. 8, 447– 453 (1998).

    Article  CAS  Google Scholar 

  65. Cook, D.G. et al. Alzheimer's ABeta(1-42) is generated in the endoplasmic reticulum/intermediate compartment of NT2N cells. Nature Med. 3, 1021–1023 (1997).

    Article  CAS  Google Scholar 

  66. Mattson, M.P., Guo, Q., Furukawa, K. & Pedersen, W.A. Presenilins, the endoplasmic reticulum, and neuronal apoptosis in Alzheimer's disease. J. Neurochem. 70, 1–14 (1998).

    Article  CAS  Google Scholar 

  67. De Strooper, B. et al. deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391, 387–390 (1998).

    Article  CAS  Google Scholar 

  68. De Strooper, B. et al. Phosphorylation, subcellular localization, and membrane orientation of the Alzheimer's disease-associated presenilins. J. Biol. Chem. 272, 3590–3598 (1997).

    Article  CAS  Google Scholar 

  69. Culvenor, J.D. et al. Res. Alzheimer's disease associated presenilin 1 in neuronal cells: evidence for localization to the endoplasmic reticulum-Golgi intermediate compartment. J. Neurosci. 49, 719– 731 (1997).

    CAS  Google Scholar 

  70. Haass, C. & Mandelkow, E. Proteolysis by presenilins and the renaissance of tau. Trends Cell Biol. 9, 241–244 (1999).

    Article  CAS  Google Scholar 

  71. Wong, P.C. et al. Presenilin 1 is required for Notch1 and DII1 expression in the paraxial mesoderm. Nature 387, 288– 292 (1997).

    Article  CAS  Google Scholar 

  72. Artavanis-Tsakonas, S., Rand, M.D. & Lake, R.J. Notch signaling: cell fate control and signal integration in development. Science 284, 770– 776 (1999).

    Article  CAS  Google Scholar 

  73. Struhl, G. & Greenwald, I. Presenilin is required for activity and nuclear access of Notch in Drosophila. Nature 398, 522–525 (1999).

    Article  CAS  Google Scholar 

  74. Chan, Y.M. & Jan, Y.N. Roles for proteolysis and trafficking in notch maturation and signal transduction. Cell 94, 423–426 (1998).

    Article  CAS  Google Scholar 

  75. De Strooper, B. et al. A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature 398, 518–522 (1999).

    Article  CAS  Google Scholar 

  76. Hampton, R.Y., Gardner, R.G. & Rine, J. Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. Mol. Biol. Cell 7, 2029–2044 (1996).

    Article  CAS  Google Scholar 

  77. Mandelkow, E.M. & Mandelkow, E. Tau in Alzheimer's disease. Trends Cell Biol. 8, 425– 427 (1998).

    Article  CAS  Google Scholar 

  78. Loo, T.W. & Clarke, D.M. Correction of defective protein kinesis of human p-glycoprotein mutants by substrates and modulators. J. Biol. Chem. 272, 709–712 (1997).

    Article  CAS  Google Scholar 

  79. Mimnaugh, E.G., Chavany, C. & Neckers, L. Polyubiquitination and proteasomal degradation of the p185c-erbB-2 receptor protein-tyrosine kinase induced by geldanamycin. J. Biol. Chem. 271, 22796– 22801 (1996).

    Article  CAS  Google Scholar 

  80. Departments of Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aridor, M., Balch, W. Integration of endoplasmic reticulum signaling in health and disease. Nat Med 5, 745–751 (1999). https://doi.org/10.1038/10466

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/10466

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing