Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Overexpression of a protein fragment of RNA helicase A causes inhibition of endogenous BRCA1 function and defects in ploidy and cytokinesis in mammary epithelial cells

Abstract

The breast- and ovarian-specific tumor suppressor, BRCA1, has been implicated to function in many nuclear processes, including DNA damage repair, recombination, transcription, ubiquitination, cell cycle checkpoint enforcement, and centrosome regulation. Utilizing a previously described interaction between BRCA1 and RNA helicase A (RHA), we have developed a dominant-negative approach to block BRCA1 function in human breast epithelial cells. Overexpression of a truncated RHA peptide that can bind to the BRCA1 carboxy-terminus prevents normal BRCA1 function, such as BRCA1 association with nuclear foci following DNA damage. Overexpression of this dominant-negative protein induces pleomorphic nuclei, aberrant mitoses with extra centrosomes, and tetraploidy. This model system allows us to observe changes to mammary epithelial cells that occur acutely following loss of BRCA1 function. Furthermore, inhibition of BRCA1 via overexpressing the RHA fragment coincides with a reduction in PARP-1 protein expression, suggesting a possible mechanism for BRCA1 in the maintenance of genomic integrity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Abbott DW, Robinson-Benion C, Tomlinson G, Jensen RA and Holt JT . (1999). J. Biol. Chem., 274, 18808–18812.

  • Anderson SF, Schlegel BP, Nakajima T, Wolpin ES and Parvin JD . (1998). Nat. Genet., 19, 254–256.

  • Benjamin RC and Gill DM . (1980). J. Biol. Chem. 255, 1502–1508.

  • Bochar DA, Wang L, Beniya H, Kinev A, Xue Y, Lane WS, Wang W, Kashanchi F and Shiekhattar R . (2000). Cell, 102, 257–265.

  • D'Amours D, Desnoyers S, D'Silva I and Poirier GG . (1999). Biochem. J., 342, 249–268.

  • de Murcia JM, Trucco C, Ricoul M, Dutrillaux B, Mark M, Oliver FJ, Masson M, Dierich A, LeMeur M, Walztinger C, Chambon P and de Murcia G . (1997). Proc. Natl. Acad. Sci. USA, 94, 7303–7307.

  • Gowen LC, Avrutskaya AV, Latour AM, Koller BH and Leadon SA . (1998). Science, 281, 1009–1012.

  • Haile DT and Parvin JD . (1999). J. Biol. Chem., 274, 2113–2117.

  • Harkin DP, Bean JM, Miklos D, Song YH, Truong VB, Englert C, Christians FC, Ellisen LW, Maheswaran S, Oliner JD and Haber DA . (1999). Cell, 97, 575–586.

  • Hsu LC, Doan TP and White RL . (2001). Cancer Res., 61, 7713–7718.

  • Hsu LC and White RL . (1998). Proc. Natl. Acad. Sci. USA, 95, 12983–12988.

  • Hu YF, Hao ZL and Li R . (1999). Genes Dev., 13, 637–642.

  • Lafarge S, Sylvain V, Ferrara M and Bignon YJ . (2001). Oncogene, 20, 6597–6606.

  • Larson JS, Tonkinson JL and Lai MT . (1997). Cancer Res., 57, 3351–3355.

  • Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG and Earnshaw WC . (1994). Nature, 371, 346–347.

  • Lingle WL, Barrett SL, Negron VC, D'Assoro AB, Boeneman K, Liu W, Whitehead CM, Reynolds C and Salisbury JL . (2002). Proc. Natl. Acad. Sci. USA, 99, 1978–1983.

  • MacLachlan TK, Somasundaram K, Sgagias M, Shifman Y, Muschel RJ, Cowan KH and El-Deiry WS . (2000). J. Biol. Chem., 275, 2777–2785.

  • Meisterernst M, Stelzer G and Roeder RG . (1997). Proc. Natl. Acad. Sci. USA, 94, 2261–2265.

  • Meraldi P, Lukas J, Fry AM, Bartek J and Nigg EA . (1999). Nat. Cell Biol., 2, 88–93.

  • Monteiro AN, August A and Hanafusa H . (1996). Proc. Natl. Acad. Sci. USA, 93, 13595–13599.

  • Moynahan ME, Chiu JW, Koller BH and Jasin M . (1999). Mol. Cell, 4, 511–518.

  • Nakajima T, Uchida C, Anderson SF, Lee CG, Hurwitz J, Parvin JD and Montminy M . (1997). Cell, 90, 1107–1112.

  • Ohgushi H, Yoshihara K and Kamiya T . (1980). J. Biol. Chem., 255, 6205–6211.

  • Schlegel BP, Green VJ, Ladias JA and Parvin JD . (2000). Proc. Natl. Acad. Sci. USA, 97, 3148–3153.

  • Scully R, Anderson SF, Chao DM, Wei W, Ye L, Young RA, Livingston DM and Parvin JD . (1997a). Proc. Natl. Acad. Sci. USA, 94, 5605–5610.

  • Scully R, Chen J, Ochs RL, Keegan K, Hoekstra M, Feunteun J and Livingston DM . (1997b). Cell, 90, 425–435.

  • Shen SX, Weaver Z, Xu X, Li C, Weinstein M, Chen L, Guan XY, Ried T and Deng CX . (1998). Oncogene, 17, 3115–3124.

  • Simbulan-Rosenthal CM, Haddad BR, Rosenthal DS, Weaver Z, Coleman A, Luo R, Young HM, Wang ZQ, Ried T and Smulson ME . (1999). Proc. Natl. Acad. Sci. USA, 96, 13191–13196.

  • Simbulan-Rosenthal CM, Ly DH, Rosenthal DS, Konopka G, Luo R, Wang ZQ, Schultz PG and Smulson ME . (2000). Proc. Natl. Acad. Sci. USA, 97, 11274–11279.

  • Snouwaert JN, Gowen LC, Latour AM, Mohn AR, Xiao A, DiBiase L and Koller BH . (1999). Oncogene, 18, 7900–7907.

  • Somasundaram K, Zhang H, Zeng YX, Houvras Y, Peng Y, Wu GS, Licht JD, Weber BL and El-Deiry WS . (1997). Nature, 389, 187–190.

  • Sonoda E, Sasaki MS, Morrison C, Yamaguchi-Iwai Y, Takata M and Takeda S . (1999). Mol. Cell. Biol., 19, 5166–5169.

  • Szabo CI and King MC . (1995). Hum. Mol. Genet. 4 (Spec No.), 1811–1817.

  • Taniguchi T, Agemori M, Kameshita I, Nishikimi M and Shizuta Y . (1982). J. Biol. Chem., 257, 4027–4030.

  • Tomlinson GE, Chen TT, Stastny VA, Virmani AK, Spillman MA, Tonk V, Blum JL, Schneider NR, Wistuba II, Shay JW, Minna JD and Gazdar, A . (1998). Cancer Res., 58, 3237–3242.

  • Vispe S, Yung TM, Ritchot J, Serizawa H and Satoh MS . (2000). Proc. Natl. Acad. Sci. USA, 97, 9886–9891.

  • Wang ZQ, Stingl L, Morrison C, Jantsch M, Los M, Schulze-Osthoff K and Wagner EF . (1997). Genes Dev., 11, 2347–2358.

  • Wang ZQ, Stingl L, Berghammer H, Haidacher D, Schweiger M and Wagner EF . (1995). Genes Dev., 9, 509–520.

  • Xu X, Weaver Z, Linke SP, Li C, Gotay J, Wang XW, Harris CC, Ried T and Deng CX . (1999). Mol. Cell, 3, 389–395.

Download references

Acknowledgements

We thank El Bachir Affar and Stephan Duensing for their helpful advice. This work was supported by Grants RSG-99-047-04-GMC from the American Cancer Society and NCI Grant CA90281 (JDP), postdoctoral fellowships from the Susan G Komen Breast Cancer Foundation, and an NIH training grant (BPS) and a predoctoral fellowship from the Massachusetts Department of Public Health Breast Cancer Research Program (LMS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey D Parvin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlegel, B., Starita, L. & Parvin, J. Overexpression of a protein fragment of RNA helicase A causes inhibition of endogenous BRCA1 function and defects in ploidy and cytokinesis in mammary epithelial cells. Oncogene 22, 983–991 (2003). https://doi.org/10.1038/sj.onc.1206195

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206195

Keywords

This article is cited by

Search

Quick links