Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Bio-Technical Methods Section (BTS)

Identification of genes potentially involved in LMO2-induced leukemogenesis

Abstract

The most common translocations in childhood T cell acute lymphoblastic leukemias involve the LMO2 locus on chromosome 11p13 and cause ectopic expression of the LMO2 gene in thymocytes. Transgenic mice with enforced expression of LMO2 in their thymocytes develop T cell leukemias thus demonstrating the role of LMO2 in leukemogenesis. The physiologic and leukemogenic functions of LMO2 are mediated through its transcriptional regulatory activities, but the identity of the target genes is completely unknown. In this report, we have used cDNA representational difference analysis (cDNA-RDA) to identify genes that are over-expressed and are likely to play a role in the LMO2 induced leukemias. cDNA-RDA was performed using very small amounts of mRNA pool (from 1 μg of total RNA) to reverse transcribe the cDNAs from leukemic cells or normal thymocytes. The cDNA-RDA led to the isolation of nine distinct clones that were specifically overexpressed in the leukemic cells. Sequence analysis revealed that five of the nine clones had identity or homology to known genes that are known to play a role in the pathogenesis of leukemias or other cancers. Three clones had no significant homology to any known genes and thus represent novel candidate genes. Our study demonstrates that cDNA-RDA using very small amounts of total RNA is a highly efficient method to identify novel genes that may play a role in leukemogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Pui C-H . Childhood leukemias New Engl J Med 1995 332: 1618–1630

    Article  CAS  Google Scholar 

  2. Rabbitts TH . Chromosomal translocations in human cancer Nature 1994 372: 143–149

    Article  CAS  Google Scholar 

  3. Boehm T, Buluwela B, Williams DL, White L, Rabbitts TH . A cluster of chromosome 11p13 translocations found via distinct D-D and D-D-J arrangements of the human T cell receptor δ chain gene EMBO J 1988 7: 2011–2017

    Article  CAS  Google Scholar 

  4. Harvey RC, Martinerie C, Sun LH, Williams DL, Showe LC . Translocations and rearrangements in T cell acute leukemias with the t(11:14)(p13;q11) chromosomal translocation Oncogene 1989 4: 341–349

    CAS  PubMed  Google Scholar 

  5. Royer-Pokora B, Fleischer B, Ragg S, Loos U, Williams DL . Molecular cloning of the translocation breakpoint in T-ALL (11;14) (p13;q11). Genomic map of TCR-α and -β region on chromosome 14q11 and long-range map of region 11p113 Hum Genet 1989 82: 264–270

    Article  CAS  Google Scholar 

  6. Royer-Pokora B, Loos U, Ludwig WD . TTG-2, a new gene encoding a cysteine-rich protein with the LIM motif, is overexpressed in acute T cell leukemia with the t(11;14)(p13;q11) Oncogene 1991 6: 1887–1893

    CAS  Google Scholar 

  7. Neale GA, Mao S, Parham DM, Murti KG, Goorha RM . Expression of the proto-oncogene rhombotin-2 is identical to the acute phase response protein metallothionein, suggesting multiple functions Cell Growth Diff 1995 6: 587–596

    CAS  PubMed  Google Scholar 

  8. Larson RC, Fisch P, Larson TA, Lavenir I, Langford T, King G, Rabbitts TH . T cell tumours of disparate phenotype in mice transgenic for Rbtn-2 Oncogene 1994 9: 3675–3681

    CAS  PubMed  Google Scholar 

  9. Larson RC, Osada H, Larson TA, Lavenir I, Rabbitts TH . The oncogenic LIM protein Rbtn2 causes thymic developmental aberrations that precede malignancy in transgenic mice Oncogene 1995 11: 853–862

    CAS  PubMed  Google Scholar 

  10. Neale GAM, Rehg JE, Goorha RM . Ectopic expression of rhombotin-2 causes selective expansion of CD4 CD8 lymphocytes in the thymus, and T cell tumors in transgenic mice Blood 1995 86: 3060–3071

    CAS  Google Scholar 

  11. Warren AJ, Colledge WH, Carlton MBL, Evans MJ, Smith AJH, Rabbitts TH . The oncogenic cysteine-rich LIM domain protein rbtn2 is essential for erythroid development Cell 1994 78: 45–57

    Article  CAS  Google Scholar 

  12. Mao S, Neale GAM, Bram RJ, Goorha R . T cell oncogene rhombotin-2 interacts with retinoblastoma binding protein-2 resulting in enhanced transcription Oncogene 1997 14: 1531–1539

    Article  CAS  Google Scholar 

  13. Osada H, Grutz G, Axelson H, Forster A, Rabbitts TH . Association of erythroid transcription factors: complexes involving the LIM protein RBTN2 and the zinc-finger protein GATA 1 Proc Natl Acad Sci USA 1995 92: 9585–9589

    Article  CAS  Google Scholar 

  14. Valge-Archer VE, Osada H, Warren AJ, Forster A, Li J, Baer R, Rabbitts TH . The LIM protein RBTN2 and the basic helix–loop–helix protein TAL1 are present in a complex in erythroid cells Proc Natl Acad Sci USA 1994 91: 8617–8621

    Article  CAS  Google Scholar 

  15. Wilkinson DA, Neale GAM, Mao S, Naeve CW, Goorha RM . Elf-2, a rhombotin-2 binding ets transcription factor: discovery and potential role in T cell leukemia Leukemia 1997 11: 86–96

    Article  CAS  Google Scholar 

  16. Mao S, Neale G, Goorha R . T cell proto-oncogene rhombotin-2 is a complex transcription regulator containing multiple activation and repression domains J Biol Chem 1997 272: 5594–5599

    Article  CAS  Google Scholar 

  17. Rosok O, Odeberg J, Rode M, Stokke T, Funderud S, Smeland E, Lundeberg J . Solid-phase method for differential display of genes expressed in hematopoietic stem cells Biotechniques 1996 21: 114–121

    Article  CAS  Google Scholar 

  18. Braun BS, Frieden R, Lessnick SL, May WA, Denny CT . Identification of target genes for the Ewing's sarcoma EWS/FL1 fusion protein by representational difference analysis Mol Cell Biol 1995 15: 4623–4630

    Article  CAS  Google Scholar 

  19. Hubank M, Schatz DG . Identifying differences in mRNA expression by representational difference analysis of cDNA Nucleic Acids Res 1994 22: 5640–5648

    Article  CAS  Google Scholar 

  20. Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ . Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease Biochemistry 1979 18: 5294–5299

    Article  CAS  Google Scholar 

  21. Brown T . Analysis of DNA sequences by blotting and hybridization. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current Protocols in Molecular Biology Greene Publishing Associates: Brooklyn, New York 1995 2.9.15–2.9.20

    Google Scholar 

  22. Neale GAM, Fitzgerald TJ, Goorha R . Expression of the V(D)J recombinase gene RAG-1 is tightly regulated and involves both transcriptional and post-translational controls Mol Immunol 1992 29: 1457–1462

    Article  CAS  Google Scholar 

  23. Thompson AD, Braun BS, Arvand A, Stewart SD, May WA, Chen E, Korenberg J, Denny C . EAT-2 is a novel SH2 domain containing protein that is up regulated by Ewing's sarcoma EWS/FL11 fusion gene Oncogene 1996 13: 2649–2658

    CAS  Google Scholar 

  24. Nagase T, Seki N, Ishikawa K, Tanaka A, Nomura N . Prediction of the coding sequences of unidentified human genes. V. The coding sequences of 40 new genes (KIAA0161-KIAA0200) deduced by analysis of DNA clones from human cell line KG-1 DNA Res 1996 3: 17–24

    Article  CAS  Google Scholar 

  25. Xie H, Notkins AL, Lan MS . IA-2, a transmembrane protein tyrosine phosphatase, is expressed in human lung cancer cell lines with neuroendocrine phenotype Cancer Res 1996 56: 2742–2744

    CAS  PubMed  Google Scholar 

  26. Davenport JW, Fernandes ER, Harris LD, Neale GAM, Goorha R . The mouse mitotic checkpoint gene Bub1b, a novel Bub1 family member, is expressed in a cell cycle-dependent manner Genomics 1999 55: 113–117

    Article  CAS  Google Scholar 

  27. Crean DH, Liebow C, Lee MT, Kamer AR, Schally AV, Mang TS . Alterations in receptor-mediated kinases and phosphatases during carcinogenesis J Cancer Res Clin Oncol 1995 121: 141–149

    Article  CAS  Google Scholar 

  28. Magistrelli G, Covini N, Mosca M, Lippoli G, Isacchi A . Expression of PTP 35, the murine homologue of the protein tyrosine phosphatase – related sequence IA-2, is regulated during cell growth and stimulated by mitogens in 3T3 fibroblasts Biochem Biophys Res Commun 1995 217: 154–161

    Article  CAS  Google Scholar 

  29. Tremblay PJ, Kozak CA, Jolicoeur P . Identification of a novel gene, Vin-1, in murine leukemia virus-induced T cell leukemias by provirus insertional mutagenesis J Virol 1992 66: 1344–1353

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hanna Z, Jankowski M, Tremblay P, Jiang X, Milatovich A, Francke U, Jolicoeur P . The Vin-1 gene, identified by provirus insertional mutagenesis, is the cyclin D2 Oncogene 1993 8: 1661–1666

    CAS  PubMed  Google Scholar 

  31. Robles AI, Larcher F, Whalin RB, Murillas R, Richie E, Gimenez-Conti IB, Jorcano JL, Conti CJ . Expression of cyclin D1 in epithelial tissues of transgenic mice results in epidermal hyperproliferation and severe thymic hyperplasia Proc Natl Acad Sci USA 1996 93: 7634–7638

    Article  CAS  Google Scholar 

  32. Yano M, Naito Z, Tanaka S, Asano G . Expression and roles of heat shock proteins in human breast cancer Jpn J Cancer Res 1996 87: 908–915

    Article  CAS  Google Scholar 

  33. Inoue A, Torigoe T, Sogahata K, Kamiguchi K, Takahashi S, Sawada Y, Saijo M, Taya Y, Ishii S, Sato N, Kikuchi K . 70-kDa heat shock cognate protein interacts directly with the N-terminal region of the retinoblastoma gene product pRb. Identification of a novel region of pRb-mediating protein interaction J Biol Chem 1995 270: 22571–22576

    Article  CAS  Google Scholar 

  34. Nihei T, Sato N, Takahashi S, Ishikawa M, Sagae S, Kudo R, Kikuchi K, Inoue A . Demonstration of selective protein complexes of p53 with 73 kDa heat shock cognate protein, but not with 72 kDa heat shock protein in human tumor cells Cancer Lett 1993 73: 181–189

    Article  CAS  Google Scholar 

  35. Soker S, Takashima S, Miao H, Neufeld G, Klagsbrun M . Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor Cell 1998 92: 735–745

    Article  CAS  Google Scholar 

  36. Hoyt MA, Totis L, Roberts BT . S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function Cell 1991 66: 507–517

    Article  CAS  Google Scholar 

  37. Li R, Murray AW . Feedback control of mitosis in budding yeast Cell 1991 66: 519–531

    Article  CAS  Google Scholar 

  38. Cahill DP, Lengauer C, Yu J, Riggins GJ, Willson JKV, Markowitz SD, Kinzler KW, Vogelstein B . Mutations of mitotic checkpoint genes in human cancers Nature 1998 392: 300–303

    Article  CAS  Google Scholar 

  39. Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies S, Bates G . Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice Cell 1996 87: 493–506

    Article  CAS  Google Scholar 

  40. Condorelli GL, Facchiano F, Valtieri M, Proietti E, Vitelli L, Lulli V, Huebner K, Peschle C, Croce CM . T cell-directed TAL-1 expression induces T cell malignancies in transgenic mice Cancer Res 1996 56: 5113–5119

    CAS  PubMed  Google Scholar 

  41. Xia Y, Brown L, Yang CY, Tsan JT, Siciliano MJ, Espinosa R, Le Beau MM, Baer RJ . TAL2, a helix-loop-helix gene activated by the (7;9)(q34;q32) translocation in human T cell leukemia Proc Natl Acad Sci USA 1991 88: 11416–11420

    Article  CAS  Google Scholar 

  42. Xia Y . Identification of the TAL2 oncogene and its protein products Diss Abstr Int 1994 55: 2083

    Google Scholar 

  43. Kuo SS, Mellentin JD, Copeland NG, Gilbert NG, Gilbert DJ, Jenkins NA, Clearly ML . Structure, chromosome mapping, and expression of the mouse Ly1–1 gene Oncogene 1991 6: 961–968

    CAS  PubMed  Google Scholar 

  44. McGuire EA, Rintoul CE, Sclar GM, Korsmeyer SJ . Thymicoverexpression of Ttg-1 in transgenic mice results in T cell acutelymphoblastic leukemia/lymphoma Mol Cell Biol 1992 12: 4186–4196

    Article  CAS  Google Scholar 

  45. Salvati PD, Ranford PR, Ford J, Kees UR . HOX11 expression in pediatric acute lymphoblastic leukemia is associated with T cell phenotype Oncogene 1995 11: 1333–1338

    CAS  PubMed  Google Scholar 

  46. Neale G, Menarguez J, Kitchingman G, Fitzgerald T, Koehler M, Mirro J, Goorha R . The detection of minimum residual disease in T cell acute lymphoblastic leukemia using polymerase chain reaction predicts impending relapse Blood 1991 78: 739–747

    CAS  PubMed  Google Scholar 

  47. Neale GAM, Pui C-H, Mahmoud HH, Mirro J, Crist WM, Rivera GK, Goorha RM . Molecular evidence for minimal residual bone marrow disease in children with ‘isolated’ extra-medullary relapse of T cell acute lymphoblastic leukemia Leukemia 1994 8: 768–775

    CAS  PubMed  Google Scholar 

  48. Campana D, Pui C-H . Detection of minimal residual disease in acute leukemia: methodological advances and clinical significance Blood 1995 85: 1416–1434

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by NIH grants CA 43237 (RG). CA 52259 (GN) and the American Lebanese Syrian Associated Charities (ALSAC). We would like to thank Ramona Tirey for excellent technical assistance and Drs Elma R Fernandes and Geoffrey R Kitchingman for helpful discussions.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davenport, J., Neale, G. & Goorha, R. Identification of genes potentially involved in LMO2-induced leukemogenesis. Leukemia 14, 1986–1996 (2000). https://doi.org/10.1038/sj.leu.2401913

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2401913

Keywords

This article is cited by

Search

Quick links