Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

MicroRNAs as potential cancer therapeutics

Abstract

MicroRNAs (miRNAs) have been shown to have an important role in various cellular processes, such as apoptosis, differentiation and development. Recent studies have shown that miRNAs are mis-expressed in human cancers where they can exert their effect as oncogenes or tumor suppressors. Here, we review the potential for using miRNAs as biomarkers for diagnosis, prognosis and cancer therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  • Bartel DP . (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297.

    Article  CAS  Google Scholar 

  • Bloomston M, Frankel WL, Petrocca F, Volinia S, Alder H, Hagan JP et al. (2007). MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 297: 1901–1908.

    Article  CAS  Google Scholar 

  • Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L et al. (2008). The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 14: 1271–1277.

    Article  CAS  Google Scholar 

  • Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al. (2002). Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99: 15524–15529.

    Article  CAS  Google Scholar 

  • Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al. (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101: 2999–3004.

    Article  CAS  Google Scholar 

  • Chan JA, Krichevsky AM, Kosik KS . (2005). MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65: 6029–6033.

    Article  CAS  Google Scholar 

  • Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM et al. (2008). Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40: 43–50.

    Article  CAS  Google Scholar 

  • Chin LJ, Ratner E, Leng S, Zhai R, Nallur S, Babar I et al. (2008). A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non-small cell lung cancer risk. Cancer Res 68: 8535–8540.

    Article  CAS  Google Scholar 

  • Christensen BC, Moyer BJ, Avissar M, Ouellet LG, Plaza SL, McClean MD et al. (2009). A let-7 microRNA-binding site polymorphism in the KRAS 3′ UTR is associated with reduced survival in oral cancers. Carcinogenesis 30: 1003–1007.

    Article  CAS  Google Scholar 

  • Ciafre SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G et al. (2005). Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334: 1351–1358.

    Article  CAS  Google Scholar 

  • Cochrane DR, Spoelstra NS, Howe EN, Nordeen SK, Richer JK . (2009). MicroRNA-200c mitigates invasiveness and restores sensitivity to microtubule-targeting chemotherapeutic agents. Mol Cancer Ther 8: 1055–1066.

    Article  CAS  Google Scholar 

  • Ebert MS, Neilson JR, Sharp PA . (2007). MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4: 721–726.

    Article  CAS  Google Scholar 

  • Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S et al. (2008). LNA-mediated microRNA silencing in non-human primates. Nature 452: 896–899.

    Article  CAS  Google Scholar 

  • Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M et al. (2006). miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3: 87–98.

    Article  CAS  Google Scholar 

  • Esquela-Kerscher A, Slack FJ . (2006). Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6: 259–269.

    Article  CAS  Google Scholar 

  • Esquela-Kerscher A, Trang P, Wiggins JF, Patrawala L, Cheng A, Ford L et al. (2008). The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle 7: 759–764.

    Article  CAS  Google Scholar 

  • Gaur A, Jewell DA, Liang Y, Ridzon D, Moore JH, Chen C et al. (2007). Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res 67: 2456–2468.

    Article  CAS  Google Scholar 

  • Gentner B, Schira G, Giustacchini A, Amendola M, Brown BD, Ponzoni M et al. (2009). Stable knockdown of microRNA in vivo by lentiviral vectors. Nat Methods 6: 63–66.

    Article  CAS  Google Scholar 

  • Gillies JK, Lorimer IA . (2007). Regulation of p27Kip1 by miRNA 221/222 in glioblastoma. Cell Cycle 6: 2005–2009.

    Article  CAS  Google Scholar 

  • He H, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S et al. (2005a). The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA 102: 19075–19080.

    Article  CAS  Google Scholar 

  • He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S et al. (2005b). A microRNA polycistron as a potential human oncogene. Nature 435: 828–833.

    Article  CAS  Google Scholar 

  • Hermeking H . (2009). The miR-34 family in cancer and apoptosis. Cell Death Differ; e-pub ahead of print 22 May 2009.

  • Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD . (2001). A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293: 834–838.

    Article  CAS  Google Scholar 

  • Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S et al. (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65: 7065–7070.

    Article  CAS  Google Scholar 

  • Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, Montoya R et al. (2001). Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev 15: 3243–3248.

    Article  CAS  Google Scholar 

  • Johnnidis JB, Harris MH, Wheeler RT, Stehling-Sun S, Lam MH, Kirak O et al. (2008). Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 451: 1125–1129.

    Article  CAS  Google Scholar 

  • Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K, Ovcharenko D et al. (2007). The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res 67: 7713–7722.

    Article  CAS  Google Scholar 

  • Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A et al. (2005). RAS is regulated by the let-7 microRNA family. Cell 120: 635–647.

    Article  CAS  Google Scholar 

  • Karube Y, Tanaka H, Osada H, Tomida S, Tatematsu Y, Yanagisawa K et al. (2005). Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci 96: 111–115.

    Article  CAS  Google Scholar 

  • Kato M, Paranjape T, Müller RU, Nallur S, Gillespie E, Keane K et al. (2009). The mir-34 microRNA is required for the DNA damage response in vivo in C. elegans and in vitro in human breast cancer cells. Oncogene 28: 2419–2424.

    Article  CAS  Google Scholar 

  • Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH . (2001). Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15: 2654–2659.

    Article  CAS  Google Scholar 

  • Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang HW et al. (2009). Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137: 1005–1017.

    Article  CAS  Google Scholar 

  • Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M et al. (2005). Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438: 685–689.

    Article  Google Scholar 

  • Kumar MS, Erkeland SJ, Pester RE, Chen CY, Ebert MS, Sharp PA et al. (2008). Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci USA 105: 3903–3908.

    Article  CAS  Google Scholar 

  • Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T . (2007). Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 39: 673–677.

    Article  CAS  Google Scholar 

  • Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K et al. (2008). Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 141: 672–675.

    Article  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V . (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843–854.

    Article  CAS  Google Scholar 

  • Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J et al. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature 425: 415–419.

    Article  CAS  Google Scholar 

  • Lee YS, Dutta A . (2007). The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev 21: 1025–1030.

    Article  CAS  Google Scholar 

  • Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al. (2005). MicroRNA expression profiles classify human cancers. Nature 435: 834–838.

    Article  CAS  Google Scholar 

  • Mayr C, Hemann MT, Bartel DP . (2007). Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 315: 1576–1579.

    Article  CAS  Google Scholar 

  • Meng F, Henson R, Lang M, Wehbe H, Maheshwari S, Mendell JT et al. (2006). Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 130: 2113–2129.

    Article  CAS  Google Scholar 

  • Merritt WM, Lin YG, Han LY, Kamat AA, Spannuth WA, Schmandt R et al. (2008). Dicer, Drosha, and outcomes in patients with ovarian cancer. N Engl J Med 359: 2641–2650.

    Article  CAS  Google Scholar 

  • Michael MZ, O’Connor SM, van Holst Pellekaan NG, Young GP, James RJ . (2003). Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1: 882–891.

    CAS  PubMed  Google Scholar 

  • Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL et al. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105: 10513–10518.

    Article  CAS  Google Scholar 

  • O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT . (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435: 839–843.

    Article  Google Scholar 

  • Pandey AK, Agarwal P, Kaur K, Datta M . (2009). MicroRNAs in diabetes: tiny players in big disease. Cell Physiol Biochem 23: 221–232.

    Article  CAS  Google Scholar 

  • Pimiento JM, Teso D, Malkan A, Dudrick SJ, Palesty JA . (2007). Cancer of unknown primary origin: a decade of experience in a community-based hospital. Am J Surg 194: 833–837; discussion 837–838.

    Article  Google Scholar 

  • Rabinowits G, Gercel-Taylor C, Day JM, Taylor DD, Kloecker GH . (2009). Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer 10: 42–46.

    Article  CAS  Google Scholar 

  • Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE et al. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403: 901–906.

    Article  CAS  Google Scholar 

  • Rosenfeld N, Aharonov R, Meiri E, Rosenwald S, Spector Y, Zepeniuk M et al. (2008). MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol 26: 462–469.

    Article  CAS  Google Scholar 

  • Roush S, Slack FJ . (2008). The let-7 family of microRNAs. Trends Cell Biol 18: 505–516.

    Article  CAS  Google Scholar 

  • Sampson VB, Rong NH, Han J, Yang Q, Aris V, Soteropoulos P et al. (2007). MicroRNA Let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res 67: 9762–9770.

    Article  CAS  Google Scholar 

  • Shell S, Park SM, Radjabi AR, Schickel R, Kistner EO, Jewell DA et al. (2007). Let-7 expression defines two differentiation stages of cancer. Proc Natl Acad Sci USA 104: 11400–11405.

    Article  CAS  Google Scholar 

  • Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY . (2007). miR-21-mediated tumor growth. Oncogene 26: 2799–2803.

    Article  CAS  Google Scholar 

  • Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H et al. (2004). Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64: 3753–3756.

    Article  CAS  Google Scholar 

  • Taylor DD, Gercel-Taylor C . (2008). MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110: 13–21.

    Article  CAS  Google Scholar 

  • Vester B, Wengel J . (2004). LNA (locked nucleic acid): high-affinity targeting of complementary RNA and DNA. Biochemistry 43: 13233–13241.

    Article  CAS  Google Scholar 

  • Visone R, Pallante P, Vecchione A, Cirombella R, Ferracin M, Ferraro A et al. (2007). Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene 26: 7590–7595.

    Article  CAS  Google Scholar 

  • Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103: 2257–2261.

    Article  CAS  Google Scholar 

  • Wang S, Olson EN . (2009). AngiomiRs—key regulators of angiogenesis. Curr Opin Genet Dev 19: 205–211.

    Article  CAS  Google Scholar 

  • Weidhaas JB, Babar I, Nallur SM, Trang P, Roush S, Boehm M et al. (2007). MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Res 67: 11111–11116.

    Article  CAS  Google Scholar 

  • Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M et al. (2006). Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9: 189–198.

    Article  CAS  Google Scholar 

  • Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C et al. (2007a). let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131: 1109–1123.

    Article  CAS  Google Scholar 

  • Yu SL, Chen HY, Chang GC, Chen CY, Chen HW, Singh S et al. (2008). MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cell 13: 48–57.

    Article  CAS  Google Scholar 

  • Yu Z, Li Z, Jolicoeur N, Zhang L, Fortin Y, Wang E et al. (2007b). Aberrant allele frequencies of the SNPs located in microRNA target sites are potentially associated with human cancers. Nucleic Acids Res 35: 4535–4541.

    Article  CAS  Google Scholar 

  • Zorio E, Medina P, Rueda J, Millan JM, Arnau MA, Beneyto M et al. (2009). Insights into the role of microRNAs in cardiac diseases: from biological signalling to therapeutic targets. Cardiovasc Hematol Agents Med Chem 7: 82–90.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F J Slack.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trang, P., Weidhaas, J. & Slack, F. MicroRNAs as potential cancer therapeutics. Oncogene 27 (Suppl 2), S52–S57 (2008). https://doi.org/10.1038/onc.2009.353

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.353

Keywords

This article is cited by

Search

Quick links