Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bacterial transformation: distribution, shared mechanisms and divergent control

Key Points

  • This Review discusses natural bacterial transformation, highlighting the common and divergent features that exist in a phylogenetically diverse range of naturally transformable species.

  • Transformation is defined as the uptake of foreign DNA as single strands and its subsequent integration into the bacterial chromosome by homologous recombination. The mechanisms of uptake and integration, which are largely conserved among species, are highlighted and their conservation is explored.

  • In contrast to DNA-uptake mechanisms, the regulation of the ability to transform (which is known as competence) and the signals that induce competence vary widely between species; the range of mechanisms that are involved are discussed.

  • The roles of competence and imported DNA are also considered, and we argue that evidence so far generally points towards a role for transformation in the generation of genetic diversity or in chromosomal repair, rather than a nutritional role.

  • Finally, we explore the future prospects in this field of research, detailing several case studies of species that have recently been shown to be transformable and the potential difficulties in demonstrating transformability in a new species.

Abstract

Natural bacterial transformation involves the internalization and chromosomal integration of DNA and has now been documented in 80 species. Recent advances have established that phylogenetically distant species share conserved uptake and processing proteins but differ in the inducing cues and regulatory mechanisms that are involved. In this Review, we highlight divergent and common principles that govern the transformation process in different bacteria. We discuss how this cumulative knowledge enables the prediction of new transformable species and supports the idea that the main role of internalized DNA is in the generation of genetic diversity or in chromosome repair rather than in nutrition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phylogenetic distribution of naturally transformable species, the DNA-uptake protein ComEC and the DNA-processing protein DprA.
Figure 2: An overview of the transformation process.
Figure 3: Divergent competence regulatory cascades.

Similar content being viewed by others

References

  1. Griffith, F. The significance of pneumococcal types. J. Hyg. 27, 113–159 (1928).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Croucher, N. J. et al. Rapid pneumococcal evolution in response to clinical interventions. Science 331, 430–434 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lorenz, M. G. & Wackernagel, W. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol. Rev. 58, 563–602 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Johnsborg, O., Eldholm, V. & Håvarstein, L. S. Natural genetic transformation: prevalence, mechanisms and function. Res. Microbiol. 158, 767–778 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Averhoff, B. & Friedrich, A. Type IV pili-related natural transformation systems: DNA transport in mesophilic and thermophilic bacteria. Arch. Microbiol. 180, 385–393 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Chen, I. & Dubnau, D. DNA uptake during bacterial transformation. Nature Rev. Microbiol. 2, 241–249 (2004).

    Article  CAS  Google Scholar 

  7. Allemand, J. F. & Maier, B. Bacterial translocation motors investigated by single molecule techniques. FEMS Microbiol. Rev. 33, 593–610 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Claverys, J. P., Martin, B. & Polard, P. The genetic transformation machinery: composition, localization and mechanism. FEMS Microbiol. Rev. 33, 643–656 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Allemand, J. F., Maier, B. & Smith, D. E. Molecular motors for DNA translocation in prokaryotes. Curr. Opin. Biotechnol. 23, 503–509 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Claverys, J. P., Prudhomme, M. & Martin, B. Induction of competence regulons as general stress responses in Gram-positive bacteria. Annu. Rev. Microbiol. 60, 451–475 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Seitz, P. & Blokesch, M. Cues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental Gram-negative bacteria. FEMS Microbiol. Rev. 37, 336–363 (2012).

    Article  PubMed  CAS  Google Scholar 

  12. Draskovic, I. & Dubnau, D. Biogenesis of a putative channel protein, ComEC, required for DNA uptake: membrane topology, oligomerization and formation of disulphide bonds. Mol. Microbiol. 55, 881–896 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Mortier-Barrière, I. et al. A key presynaptic role in transformation for a widespread bacterial protein: DprA conveys incoming ssDNA to RecA. Cell 130, 824–836 (2007). This study identifies DprA as a transformation-dedicated loader of RecA onto transforming ssDNA, which is a step that is crucial for the formation of transformation recombinants.

    Article  PubMed  CAS  Google Scholar 

  14. Hobbs, M. & Mattick, J. S. Common components in the assembly of type 4 fimbriae, DNA transfer systems, filamentous phage and protein-secretion apparatus: a general system for the formation of surface-associated protein complexes. Mol. Microbiol. 10, 233–243 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Dubnau, D. DNA uptake in bacteria. Annu. Rev. Microbiol. 53, 217–244 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Mann, J. M., Carabetta, V. J., Cristea, I. M. & Dubnau, D. Complex formation and processing of the minor transformation pilins of Bacillus subtilis. Mol. Microbiol. 90, 1201–1215 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen, I., Provvedi, R. & Dubnau, D. A macromolecular complex formed by a pilin-like protein in competent Bacillus subtilis. J. Biol. Chem. 281, 21720–21727 (2006). This paper documents the presence of a short pilus-like structure in B. subtilis . This is the first identification of a competence-specific pseudopilus in Gram-positive bacteria.

    Article  CAS  PubMed  Google Scholar 

  18. Laurenceau, R. et al. A Type IV pilus mediates DNA binding during natural transformation in Streptococcus pneumoniae. PLoS Pathog. 9, e1003473 (2013). By identifying a long pilus that is essential for transformation in S. pneumoniae , this study shows that transformation pili can protrude far beyond the cell wall of Gram-positive bacteria to capture exogenous DNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Provvedi, R. & Dubnau, D. ComEA is a DNA receptor for transformation of competent Bacillus subtilis. Mol. Microbiol. 31, 271–280 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Burrows, L. L. Weapons of mass retraction. Mol. Microbiol. 57, 878–888 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Puyet, A., Greenberg, B. & Lacks, S. A. Genetic and structural characterization of EndA. A membrane-bound nuclease required for transformation of Streptoccus pneumoniae. J. Mol. Biol. 213, 727–738 (1990).

    Article  CAS  PubMed  Google Scholar 

  22. Bergé, M. et al. Uptake of transforming DNA in Gram-positive bacteria: a view from Streptococcus pneumoniae. Mol. Microbiol. 45, 411–421 (2002).

    Article  PubMed  Google Scholar 

  23. Seitz, P. & Blokesch, M. DNA-uptake machinery of naturally competent Vibrio cholerae. Proc. Natl Acad. Sci. USA 110, 17987–17992 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bergé, M. J. et al. Midcell recruitment of the DNA uptake and virulence nuclease, EndA, for pneumococcal transformation. PLoS Pathog. 9, e1003596 (2013). This study shows that the EndA nuclease is recruited to midcell during pneumococcal competence, which indicates that DNA uptake is likely to occur at this site.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Hahn, J. et al. Transformation proteins and DNA uptake localize to the cell poles in Bacillus subtilis. Cell 122, 59–71 (2005). This study shows that DNA uptake occurs at the cell poles in competent B. subtilis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Londoño-Vallejo, J. A. & Dubnau, D. Mutation of the putative nucleotide binding site of the Bacillus subtilis membrane protein ComFA abolishes the uptake of DNA during transformation. J. Bacteriol. 176, 4642–4645 (1994).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yeh, Y. C., Lin, T. L., Chang, K. C. & Wang, J. T. Characterization of a ComE3 homologue essential for DNA transformation in Helicobacter pylori. Infect. Immun. 71, 5427–5431 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stingl, K. et al. Composite system mediates two-step DNA uptake into Helicobacter pylori. Proc. Natl Acad. Sci. USA 107, 1184–1189 (2010).

    Article  PubMed  Google Scholar 

  29. Beernink, H. T. & Morrical, S. W. RMPs: recombination/replication mediator proteins. Trends Biochem. Sci. 24, 385–389 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Quevillon-Cheruel, S. et al. Structure–function analysis of pneumococcal DprA protein reveals that dimerization is crucial for loading RecA recombinase onto DNA during transformation. Proc. Natl Acad. Sci. USA 109, E2466–E2475 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Prudhomme, M. et al. Antibiotic stress induces genetic transformability in the human pathogen Streptococcus pneumoniae. Science 313, 89–92 (2006). This paper reports the discovery that pneumococcal competence is induced in response to environmental stresses such as antibiotics and DNA-damaging agents.

    Article  CAS  PubMed  Google Scholar 

  32. Charpentier, X., Polard, P. & Claverys, J. P. Induction of competence for genetic transformation by antibiotics: convergent evolution of stress responses in distant bacterial species lacking SOS? Curr. Opin. Microbiol. 15, 1–7 (2012).

    Article  CAS  Google Scholar 

  33. Butala, M., Zgur-Bertok, D. & Busby, S. J. The bacterial LexA transcriptional repressor. Cell. Mol. Life Sci. 66, 82–93 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Lee, M. S. & Morrison, D. A. Identification of a new regulator in Streptococcus pneumoniae linking quorum sensing to competence for genetic transformation. J. Bacteriol. 181, 5004–5016 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Peterson, S. et al. Identification of competence pheromone responsive genes in Streptococcus pneumoniae. Mol. Microbiol. 51, 1051–1070 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Martin, B., Quentin, Y., Fichant, G. & Claverys, J. P. Independent evolution of competence regulatory cascades in streptococci? Trends Microbiol. 14, 339–345 (2006). This paper reports the phylogenetic analysis of the streptococcal ComDE TCS and establishes that S. mutans and several other streptococci lack this master competence regulator, which suggests that there is an alternative competence regulatory circuit in these species.

    Article  CAS  PubMed  Google Scholar 

  37. Fontaine, L. et al. A novel pheromone quorum-sensing system controls the development of natural competence in Streptococcus thermophilus and Streptococcus salivarius. J. Bacteriol. 192, 1444–1454 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Mashburn-Warren, L., Morrison, D. A. & Federle, M. J. A novel double-tryptophan peptide pheromone controls competence in Streptococcus spp. via an Rgg regulator. Mol. Microbiol. 78, 589–606 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Morrison, D. A., Guedon, E. & Renault, P. Competence for natural genetic transformation in the Streptococcus bovis Group Streptococci S. infantarius and S. macedonicus. J. Bacteriol. 195, 2612–2620 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Morikawa, K. et al. Expression of a cryptic secondary sigma factor gene unveils natural competence for DNA transformation in Staphylococcus aureus. PLoS Pathog. 8, e1003003 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mohan, S. & Dubnau, D. Transcriptional regulation of comC: evidence for a competence-specific transcription factor in Bacillus subtilis. J. Bacteriol. 172, 4064–4071 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Maamar, H. & Dubnau, D. Bistability in the Bacillus subtilis K-state (competence) system requires a positive feedback loop. Mol. Microbiol. 56, 615–624 (2005). This paper shows that stochastic variation in comK expression in B. subtilis populations determines which cells become competent.

    Article  CAS  PubMed  Google Scholar 

  43. Smits, W. K. et al. Stripping Bacillus: ComK auto-stimulation is responsible for the bistable response in competence development. Mol. Microbiol. 56, 604–614 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Dubnau, D. & Losick, R. Bistability in bacteria. Mol. Microbiol. 61, 564–572 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Smits, W. K., Kuipers, O. P. & Veening, J. W. Phenotypic variation in bacteria: the role of feedback regulation. Nature Rev. Microbiol. 4, 259–271 (2006).

    Article  CAS  Google Scholar 

  46. Maamar, H., Raj, A. & Dubnau, D. Noise in gene expression determines cell fate in Bacillus subtilis. Science 317, 526–529 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Leisner, M., Stingl, K., Frey, E. & Maier, B. Stochastic switching to competence. Curr. Opin. Microbiol. 11, 553–559 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Berka, R. M. et al. Microarray analysis of the Bacillus subtilis K-state: genome-wide expression changes dependent on ComK. Mol. Microbiol. 43, 1331–1345 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Hamoen, L. W. et al. Improving the predictive value of the competence transcription factor (ComK) binding site in Bacillus subtilis using a genomic approach. Nucl. Acids Res. 202, 5517–5528 (2002).

    Article  Google Scholar 

  50. Ogura, M. et al. Whole-genome analysis of genes regulated by the Bacillus subtilis competence transcription factor ComK. J. Bacteriol. 184, 2344–2351 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kuzniar, A., van Ham, R. C., Pongor, S. & Leunissen, J. A. The quest for orthologs: finding the corresponding gene across genomes. Trends Genet. 24, 539–551 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Wise, E. M. Jr., Alexander, S. P. & Powers, M. Adenosine 3′:5′-cyclic monophosphate as a regulator of bacterial transformation. Proc. Natl Acad. Sci. USA 70, 471–474 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dorocicz, I. E., Williams, P. M. & Redfield, R. J. The Haemophilus influenzae adenylate cyclase gene: cloning, sequence, and essential role in competence. J. Bacteriol. 175, 7142–7149 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chandler, M. S. The gene encoding cAMP receptor protein is required for competence development in Haemophilus influenzae Rd. Proc. Natl Acad. Sci. USA 89, 1626–1630 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Redfield, R. J. sxy-1, a Haemophilus influenzae mutation causing greatly enhanced spontaneous competence. J. Bacteriol. 173, 5612–5618 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Macfadyen, L. P. Regulation of competence development in Haemophilus influenzae. J. Theor. Biol. 207, 349–359 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Redfield, R. J. et al. A novel CRP-dependent regulon controls expression of competence genes in Haemophilus influenzae. J. Mol. Biol. 347, 735–747 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Meibom, K. L. et al. Chitin induces natural competence in Vibrio cholerae. Science 310, 1824–1827 (2005). This paper reports the discovery that competence in V. cholerae is induced by chitin, which is a sugar polymer that is abundant in the aquatic habitat of this bacterium.

    Article  CAS  PubMed  Google Scholar 

  59. Blokesch, M. A quorum sensing-mediated switch contributes to natural transformation of Vibrio cholerae. Mob. Genet. Elements 2, 224–227 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lo Scrudato, M. & Blokesch, M. A transcriptional regulator linking quorum sensing and chitin induction to render Vibrio cholerae naturally transformable. Nucleic Acids Res. 41, 3644–3658 (2013). This paper provides the first documentation of bipartite regulation of competence genes, in which they are directly controlled by two distinct regulators.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hamoen, L. W., Venema, G. & Kuipers, O. P. Controlling competence in Bacillus subtilis: shared use of regulators. Microbiology 149, 9–17 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Hamoen, L. W., Van Werkhoven, A. F., Dubnau, D. & Venema, G. The competence transcription factor of Bacillus subtilis recognizes short A/T-rich sequences arranged in a unique, flexible pattern along the DNA helix. Genes Dev. 12, 1539–1550 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hamoen, L. W., Van Werkhoven, A. F., Venema, G. & Dubnau, D. The pleiotropic response regulator DegU functions as a priming protein in competence development in Bacillus subtilis. Proc. Natl Acad. Sci. USA 97, 9246–9251 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hamoen, L. W. et al. The Bacillus subtilis transition state regulator AbrB binds to the -35 promoter region of comK. FEMS Microbiol. Lett. 218, 299–304 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Serror, P. & Sonenshein, A. L. CodY is required for nutritional repression of Bacillus subtilis genetic competence. J. Bacteriol. 178, 5910–5915 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hoa, T. T., Tortosa, P., Albano, M. & Dubnau, D. Rok (YkuW) regulates genetic competence in Bacillus subtilis by directly repressing comK. Mol. Microbiol. 43, 15–26 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Turgay, K., Hamoen, L. W., Venema, G. & Dubnau, D. Biochemical characterization of a molecular switch involving the heat shock protein ClpC, which controls the activity of ComK, the competence transcription factor of Bacillus subtilis. Genes Dev. 11, 119–128 (1997). This paper provides in vitro characterization of the interplay between ComK, ClpCP, MecA and ComS and demonstrated that accumulation of B. subtilis ComK is regulated by proteolysis.

    Article  CAS  PubMed  Google Scholar 

  68. Turgay, K., Hahn, J., Burghoorn, J. & Dubnau, D. Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor. EMBO J. 17, 6730–6738 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nakano, M. M. et al. srfA is an operon required for surfactin production, competence development, and efficient sporulation in Bacillus subtilis. J. Bacteriol. 173, 1770–1778 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Roggiani, M. & Dubnau, D. ComA, a phosphorylated response regulator protein of Bacillus subtilis, binds to the promoter region of srfA. J. Bacteriol. 175, 3182–3187 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hayashi, K. et al. The H2O2 stress-responsive regulator PerR positively regulates srfA expression in Bacillus subtilis. J. Bacteriol. 187, 6659–6667 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hui, F. M. & Morrison, D. A. Genetic transformation in Streptococcus pneumoniae: nucleotide sequence analysis shows comA, a gene required for competence induction, to be a member of the bacterial ATP-dependent transport protein family. J. Bacteriol. 173, 372–381 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pestova, E. V., Håvarstein, L. S. & Morrison, D. A. Regulation of competence for genetic transformation in Streptococcus pneumoniae by an auto-induced peptide pheromone and a two-component regulatory system. Mol. Microbiol. 21, 853–864 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Håvarstein, L. S., Coomaraswamy, G. & Morrison, D. A. An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. Proc. Natl Acad. Sci. USA 92, 11140–11144 (1995).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Martin, B. et al. ComE/ComEP interplay dictates activation or extinction status of pneumococcal X-state (competence). Mol. Microbiol. 87, 394–411 (2012).

    Article  PubMed  CAS  Google Scholar 

  76. Gardan, R. et al. The oligopeptide transport system is essential for the development of natural competence in Streptococcus thermophilus strain LMD-9. J. Bacteriol. 191, 4647–4655 (2009). This paper reports the seminal discovery of the involvement of an oligopeptide transporter in a competence regulatory cascade, which paved the way for the discovery of ComRS in S. thermophilus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gardan, R. et al. Extracellular life cycle of ComS, the competence-stimulating peptide of Streptococcus thermophilus. J. Bacteriol. 195, 1845–1855 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fontaine, L. et al. Mechanism of competence activation by the ComRS signalling system in streptococci. Mol. Microbiol. 87, 1113–1132 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Sulavik, M. C., Tardif, G. & Clewell, D. B. Identification of a gene, rgg, which regulates expression of glucosyltransferase and influences the Spp phenotype of Streptococcus gordonii Challis. J. Bacteriol. 174, 3577–3586 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fleuchot, B. et al. Rgg proteins associated with internalized small hydrophobic peptides: a new quorum-sensing mechanism in streptococci. Mol. Microbiol. 80, 1102–1119 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. de Saizieu, A. et al. Microarray-based identification of a novel Streptococcus pneumoniae regulon controlled by an autoinduced peptide. J. Bacteriol. 182, 4696–4703 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Federle, M. J. & Morrison, D. A. One if by land, two if by sea: signalling to the ranks with CSP and XIP. Mol. Microbiol. 86, 241–245 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lemme, A. et al. Subpopulation-specific transcriptome analysis of competence-stimulating-peptide-induced Streptococcus mutans. J. Bacteriol. 193, 1863–1877 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Son, M. et al. Microfluidic study of competence regulation in Streptococcus mutans: environmental inputs modulate bimodal and unimodal expression of comX. Mol. Microbiol. 86, 258–272 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mirouze, N. et al. Direct involvement of DprA, the transformation-dedicated RecA loader, in the shut-off of pneumococcal competence. Proc. Natl Acad. Sci. USA 110, E1035–E1044 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Yamamoto, S., Morita, M., Izumiya, H. & Watanabe, H. Chitin disaccharide (GlcNAc)2 induces natural competence in Vibrio cholerae through transcriptional and translational activation of a positive regulatory gene tfoXVC. Gene 457, 42–49 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Yamamoto, S. et al. Regulation of natural competence by the orphan two-component system sensor kinase ChiS involves a non-canonical transmembrane regulator in Vibrio cholerae. Mol. Microbiol. 91, 326–247 (2013).

    Article  PubMed  CAS  Google Scholar 

  88. Yamamoto, S. et al. Identification of a chitin-induced small RNA that regulates translation of the tfoX gene, encoding a positive regulator of natural competence in Vibrio cholerae. J. Bacteriol. 193, 1953–1965 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Herriott, R. M., Meyer, E. M. & Vogt, M. Defined nongrowth media for stage II development of competence in Haemophilus influenzae. J. Bacteriol. 101, 517–524 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bosse, J. T. et al. Natural competence in strains of Actinobacillus pleuropneumoniae. FEMS Microbiol. Lett. 298, 124–130 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Sinha, S., Mell, J. & Redfield, R. The availability of purine nucleotides regulates natural competence by controlling translation of the competence activator Sxy. Mol. Microbiol. 6, 1106–1119 (2013).

    Article  CAS  Google Scholar 

  92. Cameron, A. D., Volar, M., Bannister, L. A. & Redfield, R. J. RNA secondary structure regulates the translation of sxy and competence development in Haemophilus influenzae. Nucleic Acids Res. 36, 10–20 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Boutry, C. et al. Adpaptor protein MecA is a negative regulator of the expression of late competence genes in Streptococcus thermophilus. J. Bacteriol. 194, 1777–1788 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Biornstad, T. J. & Havarstein, L. S. ClpC acts as a negative regulator of competence in Streptococcus thermophilus. Microbiology 157, 1676–1684 (2011).

    Article  PubMed  CAS  Google Scholar 

  95. Sung, C. K. & Morrison, D. A. Two distinct functions of ComW in stabilization and activation of the alternative sigma factor ComX in Streptococcus pneumoniae. J. Bacteriol. 187, 3052–3061 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nielsen, K. M., Bones, A. M. & van Elsas, J. D. Induced natural transformation of Acinetobacter calcoaceticus in soil microcosms. Appl. Environ. Microbiol. 63, 3972–3977 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lo Scrudato, M. & Blokesch, M. The regulatory network of natural competence and transformation of Vibrio cholerae. PLoS Genet. 8, e1002778 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Keyhani, N. O. & Roseman, S. Physiological aspects of chitin catabolism in marine bacteria. Biochim. Biophys. Acta 1473, 108–122 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Murphy, T. F. & Brauer, A. L. Expression of urease by Haemophilus influenzae during human respiratory tract infection and role in survival in an acid environment. BMC. Microbiol. 11, 183 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Charpentier, X., Kay, E., Schneider, D. & Shuman, H. A. Antibiotics and UV radiation induce competence for natural transformation in Legionella pneumophila. J. Bacteriol. 193, 1114–1121 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Boutry, C. et al. SOS response activation and competence development are antagonistic mechanisms in Streptococcus thermophilus. J. Bacteriol. 195, 696–707 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ratnayake-Lecamwasam, M., Serror, P., Wong, K. W. & Sonenshein, A. L. Bacillus subtilis CodY represses early-stationary-phase genes by sensing GTP levels. Genes Dev. 15, 1093–1103 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Antonova, E. S., Bernardy, E. E. & Hammer, B. K. Natural competence in Vibrio cholerae is controlled by a nucleoside scavenging response that requires CytR-dependent anti-activation. Mol. Microbiol. 86, 1215–1231 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Michod, R. E., Bernstein, H. & Nedelcu, A. M. Adaptive value of sex in microbial pathogens. Infect. Genet. Evol. 8, 267–285 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Vos, M. Why do bacteria engage in homologous recombination? Trends Microbiol. 17, 226–232 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Redfield, R. J. Genes for breakfast: the have-your-cake-and-eat-it-too of bacterial transformation. J. Hered. 84, 400–404 (1993).

    Article  CAS  PubMed  Google Scholar 

  107. Redfield, R. J. Do bacteria have sex? Nature Rev. Genet. 2, 634–639 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Bergé, M., Mortier-Barrière, I., Martin, B. & Claverys, J. P. Transformation of Streptococcus pneumoniae relies on DprA- and RecA-dependent protection of incoming single strands. Mol. Microbiol. 50, 527–536 (2003).

    Article  PubMed  CAS  Google Scholar 

  109. Kidane, D. et al. Evidence for different pathways during horizontal gene transfer in competent Bacillus subtilis cells. PLoS. Genet. 5, e1000630 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Morrison, D. A., Mortier-Barrière, I., Attaiech, L. & Claverys, J. P. Identification of the major protein component of the pneumococcal eclipse complex. J. Bacteriol. 189, 6497–6500 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Attaiech, L. et al. Role of the single-stranded DNA binding protein SsbB in pneumococcal transformation: maintenance of a reservoir for genetic plasticity. PLoS Genet. 7, e1002156 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sinha, S., Mell, J. C. & Redfield, R. J. Seventeen Sxy-dependent cyclic AMP receptor protein site-regulated genes are needed for natural transformation in Haemophilus influenzae. J. Bacteriol. 194, 5245–5254 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Mortier-Barrière, I., de Saizieu, A., Claverys, J. P. & Martin, B. Competence-specific induction of recA is required for full recombination proficiency during transformation in Streptococcus pneumoniae. Mol. Microbiol. 27, 159–170 (1998).

    Article  PubMed  Google Scholar 

  114. Lacks, S. A., Ayalew, S., de la Campa, A. G. & Greenberg, B. Regulation of competence for genetic transformation in Streptococcus pneumoniae: expression of dpnA, a late competence gene encoding a DNA methyltransferase of the Dpn II restriction system. Mol. Microbiol. 35, 1089–1098 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Johnston, C. et al. Programmed protection of foreign DNA from restriction allows pathogenicity island exchange during pneumococcal transformation. PLoS Pathog. 9, e1003178 (2013). This study shows that a competence-induced pneumococcal methylase is crucial for protecting transformant chromosomes from restriction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Cerritelli, S., Springhorn, S. S. & Lacks, S. A. DpnA, a methylase for single-strand DNA in the Dpn II restriction system, and its biological function. Proc. Natl Acad. Sci. USA 86, 9223–9227 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Johnston, C., Martin, B., Polard, P. & Claverys, J. P. Post-replication targeting of transformants by bacterial immune systems? Trends Microbiol. 21, 516–521 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Johnston, C., Polard, P. & Claverys, J. P. The DpnI/DpnII pneumococcal system, defence against foreign attack without compromising genetic exchange. Mob. Genet. Elements 3, e25582 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Johnston, C. et al. Natural genetic transformation generates a population of merodiploids in Streptococcus pneumoniae. PLoS Genet. 9, e1003819 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Rabinovich, L. et al. Prophage excision activates Listeria competence genes that promote phagosomal escape and virulence. Cell 150, 792–802 (2012).

    Article  CAS  PubMed  Google Scholar 

  121. Claverys, J. P. & Martin, B. Bacterial “competence” genes: signatures of active transformation, or only remnants? Trends Microbiol. 11, 161–165 (2003).

    Article  CAS  PubMed  Google Scholar 

  122. Hofreuter, D., Odenbreit, S. & Haas, R. Natural transformation competence in Helicobacter pylori is mediated by the basic components of a type IV secretion system. Mol. Microbiol. 41, 379–391 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Karnholz, A. et al. Functional and topological characterization of novel components of the comB DNA transformation competence system in Helicobacter pylori. J. Bacteriol. 188, 882–893 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Dorer, M. S., Fero, J. & Salama, N. R. DNA damage triggers genetic exchange in Helicobacter pylori. PLoS Pathog. 6, e1001026 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Baltrus, D. A. & Guillemin, K. Multiple phases of competence occur during the Helicobacter pylori growth cycle. FEMS Microbiol. Lett. 255, 148–155 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Higgins, D. A. et al. The major Vibrio cholerae autoinducer and its role in virulence factor production. Nature 450, 883–886 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Chen, X. et al. Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415, 545–549 (2002).

    Article  CAS  PubMed  Google Scholar 

  128. Stephenson, S., Mueller, C., Jiang, M. & Perego, M. Molecular analysis of Phr peptide processing in Bacillus subtilis. J. Bacteriol. 185, 4861–4871 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lanigan-Gerdes, S., Dooley, A. N., Faull, K. F. & Lazazzera, B. A. Identification of subtilisin, Epr and Vpr as enzymes that produce CSF, an extracellular signalling peptide of Bacillus subtilis. Mol. Microbiol. 65, 1321–1333 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Lanigan-Gerdes, S. et al. Identification of residues important for cleavage of the extracellular signaling peptide CSF of Bacillus subtilis from its precursor protein. J. Bacteriol. 190, 6668–6675 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Henke, J. M. & Bassler, B. L. Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi. J. Bacteriol. 186, 6902–6914 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Neiditch, M. B. et al. Regulation of LuxPQ receptor activity by the quorum-sensing signal autoinducer-2. Mol. Cell 18, 507–518 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Ng, W. L. & Bassler, B. L. Bacterial quorum-sensing network architectures. Annu. Rev. Genet. 43, 197–222 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lenz, D. H. et al. The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118, 69–82 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. Halfmann, A., Kovacs, M., Hakenbeck, R. & Bruckner, R. Identification of the genes directly controlled by the response regulator CiaR in Streptococcus pneumoniae: five out of 15 promoters drive expression of small non-coding RNAs. Mol. Microbiol. 66, 110–126 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Schnorpfeil, A. et al. Target evaluation of the non-coding csRNAs reveals a link of the two-component regulatory system CiaRH to competence control in Streptococcus pneumoniae R6. Mol. Microbiol. 2, 334–349 (2013).

    Article  CAS  Google Scholar 

  137. Stevens, K. E., Chang, D., Zwack, E. E. & Sebert, M. E. Competence in Streptococcus pneumoniae is regulated by the rate of ribosomal decoding errors. mBio 2 e00071–11 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Cassone, M. et al. The HtrA protease from Streptococcus pneumoniae digests both denatured proteins and the competence-stimulating peptide. J. Biol. Chem. 287, 38449–38459 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Foster, P. L. Stress responses and genetic variation in bacteria. Mutat. Res. 569, 3–11 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Inamine, G. S. & Dubnau, D. ComEA, a Bacillus subtilis integral membrane protein required for genetic transformation, is needed for both DNA binding and transport. J. Bacteriol. 177, 3045–3051 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Barany, F., Kahn, M. E. & Smith, H. O. Directional transport and integration of donor DNA in Haemophilus influenzae. Proc. Natl Acad. Sci. USA 80, 7274–7278 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Méjean, V. & Claverys, J. P. Use of a cloned fragment to analyze the fate of donor DNA in transformation of Streptococcus pneumoniae. J. Bacteriol. 158, 1175–1178 (1984).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Mell, J. C., Hall, I. M. & Redfield, R. J. Defining the DNA uptake specificity of naturally competent Haemophilus influenzae cells. Nucleic Acids Res. 40, 8536–8549 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Claverys, J. P. & Håvarstein, L. S. Cannibalism and fratricide: mechanisms and raisons d'être. Nature Rev. Microbiol. 5, 219–229 (2007).

    Article  CAS  Google Scholar 

  145. Claverys, J. P., Martin, B. & Håvarstein, L. S. Competence-induced fratricide in streptococci. Mol. Microbiol. 64, 1423–1433 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Johnsborg, O., Eldholm, V., Bjornstad, M. L. & Håvarstein, L. S. A predatory mechanism dramatically increases the efficiency of lateral gene transfer in Streptococcus pneumoniae and related commensal species. Mol. Microbiol. 69, 245–253 (2008).

    Article  CAS  PubMed  Google Scholar 

  147. Aas, F. E., Lovold, C. & Koomey, M. An inhibitor of DNA binding and uptake events dictates the proficiency of genetic transformation in Neisseria gonorrhoeae: mechanism of action and links to type IV pilus expression. Mol. Microbiol. 46, 1441–1450 (2002).

    Article  CAS  PubMed  Google Scholar 

  148. Redfield, R. J. et al. Evolution of competence and DNA uptake specificity in the Pasteurellaceae. BMC Evol. Biol. 6, 82 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Frye, S. A., Nilsen, M., Tonjum, T. & Ambur, O. H. Dialects of the DNA uptake sequence in Neisseriaceae. PLoS Genet. 9, e1003458 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Blokesch, M. & Schoolnik, G. K. The extracellular nuclease Dns and its role in natural transformation of Vibrio cholerae. J. Bacteriol. 190, 7232–7240 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Finkel, S. E. & Kolter, R. DNA as a nutrient: novel role for bacterial competence gene homologs. J. Bacteriol. 183, 6288–6293 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Palchevskiy, V. & Finkel, S. E. Escherichia coli competence gene homologs are essential for competitive fitness and the use of DNA as a nutrient. J. Bacteriol. 188, 3902–3910 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Sun, D. Etude de la transformation plasmidique naturelle d'Escherichia coli et des ses relations éventuelles avec la compétence programmée pour la transformation génétique et la compétence dite nutritionnelle. Thesis, Univ. P. Sabatier, Toulouse, France (2011).

    Google Scholar 

  154. Blomqvist, T., Steinmoen, H. & Håvarstein, L. S. Natural genetic transformation: a novel tool for efficient genetic engineering of the dairy bacterium Streptococcus thermophilus. Appl. Environ. Microbiol. 72, 6751–6756 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Morikawa, K. et al. A new staphylococcal sigma factor in the conserved gene cassette: functional significance and implication for the evolutionary processes. Genes Cells 8, 699–712 (2003).

    Article  CAS  PubMed  Google Scholar 

  156. Schmid, S., Bevilacqua, C. & Crutz-Le Coq, A. M. Alternative sigma factor σH activates competence gene expression in Lactobacillus sakei. BMC. Microbiol. 12, 32 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Opdyke, J. A., Scott, J. R. & Moran, C. P. Jr. A secondary RNA polymerase sigma factor from Streptococcus pyogenes. Mol. Microbiol. 42, 495–502 (2001).

    Article  CAS  PubMed  Google Scholar 

  158. Woodbury, R. L., Wang, X. & Moran, C. P. Jr. Sigma X induces competence gene expression in Streptococcus pyogenes. Res. Microbiol. 157, 851–856 (2006).

    Article  CAS  PubMed  Google Scholar 

  159. Mashburn-Warren, L., Morrison, D. A. & Federle, M. J. The cryptic competence pathway in Streptococcus pyogenes is controlled by a peptide pheromone. J. Bacteriol. 194, 4589–4600 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Thorne, C. B. & Stull, H. B. Factors affecting transformation of Bacillus licheniformis. J. Bacteriol. 91, 1012–1020 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Koumoutsi, A. et al. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J. Bacteriol. 186, 1084–1096 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Kovacs, A. T., Smits, W. K., Mironczuk, A. M. & Kuipers, O. P. Ubiquitous late competence genes in Bacillus species indicate the presence of functional DNA uptake machineries. Environ. Microbiol. 11, 1911–1922 (2009).

    Article  CAS  PubMed  Google Scholar 

  163. Mironczuk, A. M., Kovacs, A. T. & Kuipers, O. P. Induction of natural competence in Bacillus cereus ATCC14579. Microb. Biotech. 1, 226–235 (2008).

    Article  CAS  Google Scholar 

  164. Cameron, A. D. & Redfield, R. J. Non-canonical CRP sites control competence regulons in Escherichia coli and many other γ-proteobacteria. Nucleic Acids Res. 34, 6001–6014 (2006). This study identifies a subset of CRP-binding sites that depend on the Sxy competence-regulating cofactor for transcriptional activation, which led to the finding that sxy regulons are induced during competence in H. influenzae and Gammaproteobacteria.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Sinha, S., Cameron, A. D. & Redfield, R. J. Sxy induces a CRP-S regulon in Escherichia coli. J. Bacteriol. 191, 5180–5195 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Sinha, S. & Redfield, R. J. Natural DNA uptake by Escherichia coli. PLoS ONE. 7, e35620 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Shimodaira, H. & Hasegawa, M. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol. Biol. Evol. 16, 1114–1116 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Y. Quentin for his help with phylogenetic analysis and the construction of the species tree. The authors apologize to researchers whose work could not be specifically cited owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Claverys.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

Sun, D. Thesis (reference 153)

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

Naturally transformable bacterial species (XLSX 25 kb)

Glossary

Parasexual

A term used to describe a form of reproduction in which genetic recombination occurs in the absence of meiosis, wherein one 'partner' is DNA.

Homologous recombination

The exchange of DNA sequences between identical or similar molecules. In the case of transformation, this involves the host chromosome and internalized single-stranded DNA (ssDNA).

Transduction

A mechanism of horizontal gene transfer, in which DNA is accidentally transferred to a new host by a bacteriophage vector.

Conjugation

A mechanism of horizontal gene transfer by cell-to-cell contact that is primarily used for plasmid transfer but occasionally leads to chromosomal transfer.

Regulons

Sets of genes that are under coordinated control by dedicated regulatory circuits.

Transformation heteroduplex

A DNA duplex that is comprised of one strand of host chromosomal DNA and a complementary strand of internalized DNA.

Pili

Filamentous extracellular appendages that are present in some bacteria and that participate in different processes. Transformation pili promote the capture of exogenous DNA for uptake.

Alternative sigma factors

(alternative σ factors). Alternative RNA polymerase cofactors that direct the RNA polymerase to specific promoters.

Transcription co-regulators

Proteins that lack DNA-binding activity but can interact with and stimulate the activity of a transcription activator, thus indirectly promoting transcription.

SOS response

A global response to DNA damage that enables DNA repair in bacteria.

Orthologue

A homologous gene that is derived by a speciation event from a single ancestral sequence. Orthologues typically carry out equivalent functions in closely related species.

Two-component signal-transduction system

(TCS). A system that comprises a histidine kinase and a response regulator; TCSs enable bacteria to sense signals (including those in the extracellular environment) and to regulate genes accordingly.

Bacteriocins

Small peptides that are produced by bacteria to inhibit the growth of other species (sometimes closely related species) to which the producer possesses an immunity mechanism.

Non-coding small RNA

A functional RNA molecule that is not translated into a protein.

CAI-1

(Cholerae autoinducer 1).The main quorum-sensing signalling molecule of the human pathogen Vibrio cholerae; it has been identified as (S)-3-hydroxytridecan-4-one.

AI-2

(Autoinducer 2). An inter-genera signalling molecule that is involved in quorum-sensing; it has been identified as the furanyl borate diester (2S,4S)-2-methyl-2,3,3,4-tetrahydroxytetrahydrofuran borate.

CSF

(Competence and sporulation factor). A signalling molecule that contributes to quorum-sensing in Bacillus subtilis. CSF is a pentapeptide that is produced from Phr precursor peptide, which is re-imported by the oligopeptide permease Opp.

Pherotypes

Streptococci that produce the same competence-stimulating peptide (CSP) belong to the same pherotype.

Quorum-sensing

The regulation of gene expression in response to cell density; secreted inducing molecules are sensed and induction occurs only when a critical cell density is reached.

Cell–cell signalling

A mechanism of cell–cell communication in which an inducing molecule is produced and can be sensed by neighbouring cells, resulting in coordinated gene expression. This mechanism is not necessarily dependent on cell density owing to the fact that inducer expression can be regulated by external signals.

Alarmone

A signalling molecule that is produced by bacteria in response to stress, which stimulates the expression of proteins involved in cellular processes that counteract the stress.

Autoinducers

Non-proteinaceous chemical signalling molecules that are involved in cell–cell signalling and quorum-sensing.

Carbon catabolite repression

(CCR). A regulatory mechanism in which the regulation of phosphotransferase systems enables the sequential utilization of carbon sources.

Mitomycin C

A DNA-damaging agent that crosslinks target DNA and is toxic to bacterial cells.

Hydroxyurea

A synthetic compound that promotes the stalling of bacterial replication forks by depleting nucleotide pools.

Fratricide

The ability of competent pneumococcal cells to promote lysis of non-competent neighbouring pneumococci and closely related streptococci, liberating DNA for transformation and virulence factors.

Paralogue

One of a pair of homologous genes that are derived by a duplication event from a single sequence. Paralogous relationships occur both within and between genomes, and paralogues can evolve to have novel functions.

Restriction–modification system

(R–M system). A bacterial immune system that protects cells from invading foreign DNA, such as that injected by bacteriophages. Most of these systems encode a restriction enzyme that cleaves specific sequences in unmethylated DNA and a methylase that methylates the host genome, thereby protecting it from restriction.

K-state

An alternative for competence in ComK-possessing bacteria (Bacilli), representing induction of the ComK regulon.

X-state

An alternative for competence in σX-possessing bacteria (Streptococci), representing induction of the σX regulon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnston, C., Martin, B., Fichant, G. et al. Bacterial transformation: distribution, shared mechanisms and divergent control. Nat Rev Microbiol 12, 181–196 (2014). https://doi.org/10.1038/nrmicro3199

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3199

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology