Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Behind the smile: cell biology and disease mechanisms of Giardia species

Key Points

  • Giardia intestinalis is recognized as a major worldwide contributor to diarrhoeal disease in humans and other mammals, but the disease mechanisms have been poorly understood until recently.

  • Giardia spp. are some of the most divergent eukaryotes examined to date and provide unique opportunities for gaining basic insights into key pathways that characterize eukaryotic cells and also for identifying new molecular mechanisms.

  • Cell differentiation in Giardia spp. involves two major developmental transitions: from the ingested, dormant cyst via the excyzoite to trophozoites, in a process known as excystation, and from the motile, replicating trophozoite back to the infective cyst, in a process known as encystation.

  • Mitosomes in Giardia spp. are elongated, double-membraned organelles that are related to mitochondria, and their only known function is in the assembly of Fe–S clusters.

  • Giardia spp., like all diplomonads, have two nuclei. These nuclei have been shown to be equivalent in size and in the amount of DNA that they contain, and both are transcriptionally active.

  • Analyses of Giardia spp. genomes indicate that these organisms encode rudimentary forms of many cellular processes, with fewer subunits present in simplified cellular machineries, and have a limited metabolic repertoire with many bacterial-like enzymes that were introduced by horizontal gene transfer.

  • The adhesive disc and the four flagella of the pathogen, together with differentiation and antigenic variation of the variant-specific surface proteins (VSPs), are the major virulence factors identified to date for Giardia spp. Epigenetic mechanisms, microRNAs and RNA interference have been shown to be important in the regulation of vsp gene expression.

  • Several mechanisms (including epithelial-barrier dysfunction, apoptosis, diffuse shortening of microvilli, hypersecretion of Cl and inhibition of brush-border enzymes) have been proposed to be important for the induction of symptoms during giardial infection, and the cause of giardiasis is probably multifactorial.

Abstract

The eukaryotic intestinal parasite Giardia intestinalis was first described in 1681, when Antonie van Leeuwenhoek undertook a microscopic examination of his own diarrhoeal stool. Nowadays, although G. intestinalis is recognized as a major worldwide contributor to diarrhoeal disease in humans and other mammals, the disease mechanisms are still poorly understood. Owing to its reduced complexity and proposed early evolutionary divergence, G. intestinalis is used as a model eukaryotic system for studying many basic cellular processes. In this Review we discuss recent discoveries in the molecular cell biology and pathogenesis of G. intestinalis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Life cycle of Giardia intestinalis.
Figure 2: Key features of the giardial trophozoite and cyst.
Figure 3: Antigenic variation in Giardia spp.

Similar content being viewed by others

References

  1. Lane, S. & Lloyd, D. Current trends in research into the waterborne parasite Giardia. Crit. Rev. Microbiol. 28, 123–147 (2002).

    Article  PubMed  Google Scholar 

  2. O'Handley, R. M., Buret, A. G., McAllister, T. A., Jelinski, M. & Olson, M. E. Giardiasis in dairy calves: effects of fenbendazole treatment on intestinal structure and function. Int. J. Parasitol. 31, 73–79 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Rendtorff, R. C. The experimental transmission of human intestinal protozoan parasites. II. Giardia lamblia cysts given in capsules. Am. J. Hyg. 59, 209–220 (1954).

    CAS  PubMed  Google Scholar 

  4. Farthing, M. J. The molecular pathogenesis of giardiasis. J. Pediatr. Gastroenterol. Nutr. 24, 79–88 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Buret, A. G. Mechanisms of epithelial dysfunction in giardiasis. Gut 56, 316–317 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ortega, Y. R. & Adam, R. D. Giardia: overview and update. Clin. Infect. Dis. 25, 545–549 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Hanevik, K., Dizdar, V., Langeland, N. & Hausken, T. Development of functional gastrointestinal disorders after Giardia lamblia infection. BMC Gastroenterol. 9, 27 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Svard, S. G., Hagblom, P. & Palm, J. E. Giardia lamblia – a model organism for eukaryotic cell differentiation. FEMS Microbiol. Lett. 218, 3–7 (2003).

    CAS  PubMed  Google Scholar 

  9. Simpson, A. G. Cytoskeletal organization, phylogenetic affinities and systematics in the contentious taxon Excavata (Eukaryota). Int. J. Syst. Evol. Microbiol. 53, 1759–1777 (2003).

    Article  PubMed  Google Scholar 

  10. Lauwaet, T., Davids, B. J., Reiner, D. S. & Gillin, F. D. Encystation of Giardia lamblia: a model for other parasites. Curr. Opin. Microbiol. 10, 554–559 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Paget, T. A., Macechko, P. T. & Jarroll, E. L. Metabolic changes in Giardia intestinalis during differentiation. J. Parasitol. 84, 222–226 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Hetsko, M. L. et al. Cellular and transcriptional changes during excystation of Giardia lamblia in vitro. Exp. Parasitol. 88, 172–183 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Buchel, L. A., Gorenflot, A., Chochillon, C., Savel, J. & Gobert, J. G. In vitro excystation of Giardia from humans: a scanning electron microscopy study. J. Parasitol. 73, 487–493 (1987).

    Article  CAS  PubMed  Google Scholar 

  14. Ward, W. et al. A primitive enzyme for a primitive cell: the protease required for excystation of Giardia. Cell 89, 437–444 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Bernander, R., Palm, J. E. & Svard, S. G. Genome ploidy in different stages of the Giardia lamblia life cycle. Cell. Microbiol. 3, 55–62 (2001). The first demonstration of ploidy changes during the compete giardial life cycle.

    Article  CAS  PubMed  Google Scholar 

  16. Palm, D. et al. Developmental changes in the adhesive disk during Giardia differentiation. Mol. Biochem. Parasitol. 141, 199–207 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Slavin, I. et al. Dephosphorylation of cyst wall proteins by a secreted lysosomal acid phosphatase is essential for excystation of Giardia lamblia. Mol. Biochem. Parasitol. 122, 95–98 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Reiner, D. S. et al. Calcium signaling in excystation of the early diverging eukaryote, Giardia lamblia. J. Biol. Chem. 278, 2533–2540 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Lauwaet, T. et al. Protein phosphatase 2A plays a crucial role in Giardia lamblia differentiation. Mol. Biochem. Parasitol. 152, 80–89 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Abel, E. S. et al. Possible roles of protein kinase A in cell motility and excystation of the early diverging eukaryote Giardia lamblia. J. Biol. Chem. 276, 10320–10329 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Elmendorf, H. G., Dawson, S. C. & McCaffery, J. M. The cytoskeleton of Giardia lamblia. Int. J. Parasitol. 33, 3–28 (2003).

    Article  PubMed  Google Scholar 

  22. Weiland, M. E., McArthur, A. G., Morrison, H. G., Sogin, M. L. & Svard, S. G. Annexin-like alpha giardins: a new cytoskeletal gene family in Giardia lamblia. Int. J. Parasitol. 35, 617–626 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Adam, R. D. Biology of Giardia lamblia. Clin. Microbiol. Rev. 14, 447–475 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sheffield, H. G. & Bjorvatn, B. Ultrastructure of the cyst of Giardia lamblia. Am. J. Trop. Med. Hyg. 26, 23–30 (1977).

    Article  CAS  PubMed  Google Scholar 

  25. Chavez-Munguia, B. et al. Ultrastructure of cyst differentiation in parasitic protozoa. Parasitol. Res. 100, 1169–1175 (2007).

    Article  PubMed  Google Scholar 

  26. Erlandsen, S. L., Macechko, P. T., van Keulen, H. & Jarroll, E. L. Formation of the Giardia cyst wall: studies on extracellular assembly using immunogold labeling and high resolution field emission SEM. J. Eukaryot. Microbiol. 43, 416–429 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Mowatt, M. R. et al. Developmentally regulated expression of a Giardia lamblia cyst wall protein gene. Mol. Microbiol. 15, 955–963 (1995). The first cloning and characterization of an encystation-specific gene.

    Article  CAS  PubMed  Google Scholar 

  28. Lujan, H. D., Mowatt, M. R., Conrad, J. T., Bowers, B. & Nash, T. E. Identification of a novel Giardia lamblia cyst wall protein with leucine-rich repeats. Implications for secretory granule formation and protein assembly into the cyst wall. J. Biol. Chem. 270, 29307–29313 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Sun, C. H., McCaffery, J. M., Reiner, D. S. & Gillin, F. D. Mining the Giardia lamblia genome for new cyst wall proteins. J. Biol. Chem. 278, 21701–21708 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Davids, B. J. et al. A new family of giardial cysteine-rich non-VSP protein genes and a novel cyst protein. PLoS ONE 1, e44 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nash, T. E. Surface antigenic variation in Giardia lamblia. Mol. Microbiol. 45, 585–590 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Gerwig, G. J. et al. The Giardia intestinalis filamentous cyst wall contains a novel β(1–3)-N-acetyl-D-galactosamine polymer: a structural and conformational study. Glycobiology 12, 499–505 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Knodler, L. A., Svard, S. G., Silberman, J. D., Davids, B. J. & Gillin, F. D. Developmental gene regulation in Giardia lamblia: first evidence for an encystation-specific promoter and differential 5′ mRNA processing. Mol. Microbiol. 34, 327–340 (1999). A description of the first cloning of an enzyme involved in the cyst wall sugar synthesis pathway and the characterization of an encystation-specific promoter.

    Article  CAS  PubMed  Google Scholar 

  34. Karr, C. D. & Jarroll, E. L. Cyst wall synthase: N-acetylgalactosaminyltransferase activity is induced to form the novel N-acetylgalactosamine polysaccharide in the Giardia cyst wall. Microbiology 150, 1237–1243 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Davis-Hayman, S. R., Hayman, J. R. & Nash, T. E. Encystation-specific regulation of the cyst wall protein 2 gene in Giardia lamblia by multiple cis-acting elements. Int. J. Parasitol. 33, 1005–1012 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Sun, C. H., Palm, D., McArthur, A. G., Svard, S. G. & Gillin, F. D. A novel Myb-related protein involved in transcriptional activation of encystation genes in Giardia lamblia. Mol. Microbiol. 46, 971–984 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Huang, Y. C. et al. Regulation of cyst wall protein promoters by Myb2 in Giardia lamblia. J. Biol. Chem. 283, 31021–31029 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sun, C. H., Su, L. H. & Gillin, F. D. Novel plant-GARP-like transcription factors in Giardia lamblia. Mol. Biochem. Parasitol. 146, 45–57 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, C. H., Su, L. H. & Sun, C. H. A novel ARID/Bright-like protein involved in transcriptional activation of cyst wall protein 1 gene in Giardia lamblia. J. Biol. Chem. 282, 8905–8914 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Pan, Y. J., Cho, C. C., Kao, Y. Y. & Sun, C. H. A novel WRKY-like protein involved in transcriptional activation of cyst wall protein genes in Giardia lamblia. J. Biol. Chem. 284, 17975–17988 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Boheler, K. R. Stem cell pluripotency: a cellular trait that depends on transcription factors, chromatin state and a checkpoint deficient cell cycle. J. Cell. Physiol. 221, 10–17 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Reiner, D. S., Douglas, H. & Gillin, F. D. Identification and localization of cyst-specific antigens of Giardia lamblia. Infect. Immun. 57, 963–968 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Marti, M. & Hehl, A. B. Encystation-specific vesicles in Giardia: a primordial Golgi or just another secretory compartment? Trends Parasitol. 19, 440–446 (2003).

    Article  PubMed  Google Scholar 

  44. Stefanic, S. et al. Neogenesis and maturation of transient Golgi-like cisternae in a simple eukaryote. J. Cell Sci. 122, 2846–2856 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Gaechter, V., Schraner, E., Wild, P. & Hehl, A. B. The single dynamin family protein in the primitive protozoan Giardia lamblia is essential for stage conversion and endocytic transport. Traffic 9, 57–71 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Marti, M. et al. An ancestral secretory apparatus in the protozoan parasite Giardia intestinalis. J. Biol. Chem. 278, 24837–24848 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Elias, E. V. et al. Characterization of SNAREs determines the absence of a typical Golgi apparatus in the ancient eukaryote Giardia lamblia. J. Biol. Chem. 283, 35996–36010 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Knodler, L. A. et al. Novel protein-disulfide isomerases from the early-diverging protist Giardia lamblia. J. Biol. Chem. 274, 29805–29811 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. DuBois, K. N. et al. Identification of the major cysteine protease of Giardia and its role in encystation. J. Biol. Chem. 283, 18024–18031 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Touz, M. C. et al. The activity of a developmentally regulated cysteine proteinase is required for cyst wall formation in the primitive eukaryote Giardia lamblia. J. Biol. Chem. 277, 8474–8481 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Touz, M. C., Gottig, N., Nash, T. E. & Lujan, H. D. Identification and characterization of a novel secretory granule calcium-binding protein from the early branching eukaryote Giardia lamblia. J. Biol. Chem. 277, 50557–50563 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Stefanic, S., Palm, D., Svard, S. G. & Hehl, A. B. Organelle proteomics reveals cargo maturation mechanisms associated with Golgi-like encystation vesicles in the early-diverged protozoan Giardia lamblia. J. Biol. Chem. 281, 7595–7604 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Roger, A. J. et al. A mitochondrial-like chaperonin 60 gene in Giardia lamblia: evidence that diplomonads once harbored an endosymbiont related to the progenitor of mitochondria. Proc. Natl Acad. Sci. USA 95, 229–234 (1998). This article describes the identification of the first mitochondrial gene in a Giardia species.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tovar, J. et al. Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 426, 172–176 (2003). This study identifies the mitosome, which is a reduced mitochondrion lacking DNA and many typical mitochondrial functions.

    Article  CAS  PubMed  Google Scholar 

  55. Regoes, A. et al. Protein import, replication, and inheritance of a vestigial mitochondrion. J. Biol. Chem. 280, 30557–30563 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Hehl, A. B., Regos, A., Schraner, E. & Schneider, A. Bax function in the absence of mitochondria in the primitive protozoan Giardia lamblia. PLoS ONE 2, e488 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Smid, O. et al. Reductive evolution of the mitochondrial processing peptidases of the unicellular parasites Trichomonas vaginalis and Giardia intestinalis. PLoS Pathog. 4, e1000243 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dolezal, P. et al. Giardia mitosomes and trichomonad hydrogenosomes share a common mode of protein targeting. Proc. Natl Acad. Sci. USA 102, 10924–10929 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rada, P. et al. The monothiol single-domain glutaredoxin is conserved in the highly reduced mitochondria of Giardia intestinalis. Eukaryot. Cell 8, 1584–1591 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dolezal, P., Likic, V., Tachezy, J. & Lithgow, T. Evolution of the molecular machines for protein import into mitochondria. Science 313, 314–318 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Dagley, M. J. et al. The protein import channel in the outer mitosomal membrane of Giardia intestinalis. Mol. Biol. Evol. 26, 1941–1947 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Caccio, S. M. & Ryan, U. Molecular epidemiology of giardiasis. Mol. Biochem. Parasitol. 160, 75–80 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Monis, P. T., Caccio, S. M. & Thompson, R. C. Variation in Giardia: towards a taxonomic revision of the genus. Trends Parasitol. 25, 93–100 (2009).

    Article  PubMed  Google Scholar 

  64. Kabnick, K. S. & Peattie, D. A. In situ analyses reveal that the two nuclei of Giardia lamblia are equivalent. J. Cell. Sci. 95, 353–360 (1990).

    PubMed  Google Scholar 

  65. Yu, L. Z., Birky, C. W. Jr & Adam, R. D. The two nuclei of Giardia each have complete copies of the genome and are partitioned equationally at cytokinesis. Eukaryot. Cell 1, 191–199 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tumova, P., Hofstetrova, K., Nohynkova, E., Hovorka, O. & Kral, J. Cytogenetic evidence for diversity of two nuclei within a single diplomonad cell of Giardia. Chromosoma 116, 65–78 (2007).

    Article  PubMed  Google Scholar 

  67. Benchimol, M. Giardia lamblia: behavior of the nuclear envelope. Parasitol. Res. 94, 254–264 (2004).

    Article  PubMed  Google Scholar 

  68. Jimenez-Garcia, L. F. et al. Identification of nucleoli in the early branching protist Giardia duodenalis. Int. J. Parasitol. 38, 1297–1304 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Saraiya, A. A. & Wang, C. C. snoRNA, a novel precursor of microRNA in Giardia lamblia. PLoS Pathog. 4, e1000224 (2008). The first publication showing that snoRNAs can be miRNA precursors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sagolla, M. S., Dawson, S. C., Mancuso, J. J. & Cande, W. Z. Three-dimensional analysis of mitosis and cytokinesis in the binucleate parasite Giardia intestinalis. J. Cell Sci. 119, 4889–4900 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Reiner, D. S. et al. Synchronisation of Giardia lamblia: identification of cell cycle stage-specific genes and a differentiation restriction point. Int. J. Parasitol. 38, 935–944 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Morrison, H. G. et al. Genomic minimalism in the early diverging intestinal parasite G iardia lamblia. Science 317, 1921–1926 (2007). Sequencing of the first giardial genome, showing that G. intestinalis has reduced cellular complexes.

    Article  CAS  PubMed  Google Scholar 

  73. Franzen, O. et al. Draft genome sequencing of Giardia intestinalis assemblage B isolate GS: is human giardiasis caused by two different species? PLoS Pathog. 5, e1000560 (2009). The first example of de novo 454 sequencing of a protozoan parasite, identifying genomic differences between giardial assemblage A and assemblage B isolates that suggest that they are different species.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Byrd, L. G., Conrad, J. T. & Nash, T. E. Giardia lamblia infections in adult mice. Infect. Immun. 62, 3583–3585 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Nash, T. E., Herrington, D. A., Losonsky, G. A. & Levine, M. M. Experimental human infections with Giardia lamblia. J. Infect. Dis. 156, 974–984 (1987). A classic paper that uses Koch's postulate to show that G. intestinalis is a true pathogen.

    Article  CAS  PubMed  Google Scholar 

  76. Cooper, M. A., Adam, R. D., Worobey, M. & Sterling, C. R. Population genetics provides evidence for recombination in Giardia. Curr. Biol. 17, 1984–1988 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Lebbad, M. et al. Dominance of Giardia assemblage B in Leon, Nicaragua. Acta Trop. 106, 44–53 (2008).

    Article  PubMed  Google Scholar 

  78. Ramesh, M. A., Malik, S. B. & Logsdon, J. M. Jr. A phylogenomic inventory of meiotic genes; evidence for sex in Giardia and an early eukaryotic origin of meiosis. Curr. Biol. 15, 185–191 (2005).

    CAS  PubMed  Google Scholar 

  79. Malik, S. B., Pightling, A. W., Stefaniak, L. M., Schurko, A. M. & Logsdon, J. M. Jr. An expanded inventory of conserved meiotic genes provides evidence for sex in Trichomonas vaginalis. PLoS ONE 3, e2879 (2008).

    Article  PubMed Central  Google Scholar 

  80. Logsdon, J. M. Jr. Evolutionary genetics: sex happens in Giardia. Curr. Biol. 18, R66–R68 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Poxleitner, M. K. et al. Evidence for karyogamy and exchange of genetic material in the binucleate intestinal parasite Giardia intestinalis. Science 319, 1530–1533 (2008). A paper introducing the concept of diplomixis: the transfer of DNA between the two nuclei in Giardia spp.

    Article  CAS  PubMed  Google Scholar 

  82. Roxstrom-Lindquist, K., Palm, D., Reiner, D., Ringqvist, E. & Svard, S. G. Giardia immunity — an update. Trends Parasitol. 22, 26–31 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Prucca, C. G. & Lujan, H. D. Antigenic variation in Giardia lamblia. Cell. Microbiol. 11, 1706–1715 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Adam, R. D. et al. Antigenic variation of a cysteine-rich protein in Giardia lamblia. J. Exp. Med. 167, 109–118 (1988).

    Article  CAS  PubMed  Google Scholar 

  85. Aggarwal, A. & Nash, T. E. Antigenic variation of Giardia lamblia in vivo. Infect. Immun. 56, 1420–1423 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Gillin, F. D. et al. Isolation and expression of the gene for a major surface protein of Giardia lamblia. Proc. Natl Acad. Sci. USA 87, 4463–4467 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Svard, S. G., Meng, T. C., Hetsko, M. L., McCaffery, J. M. & Gillin, F. D. Differentiation-associated surface antigen variation in the ancient eukaryote Giardia lamblia. Mol. Microbiol. 30, 979–989 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Nash, T. E., Banks, S. M., Alling, D. W., Merritt, J. W. Jr & Conrad, J. T. Frequency of variant antigens in Giardia lamblia. Exp. Parasitol. 71, 415–421 (1990).

    Article  CAS  PubMed  Google Scholar 

  89. Singer, S. M., Elmendorf, H. G., Conrad, J. T. & Nash, T. E. Biological selection of variant-specific surface proteins in Giardia lamblia. J. Infect. Dis. 183, 119–124 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Muller, J., Sterk, M., Hemphill, A. & Muller, N. Characterization of Giardia lamblia WB C6 clones resistant to nitazoxanide and to metronidazole. J. Antimicrob. Chemother. 60, 280–287 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Hiltpold, A., Frey, M., Hulsmeier, A. & Kohler, P. Glycosylation and palmitoylation are common modifications of Giardia variant surface proteins. Mol. Biochem. Parasitol. 109, 61–65 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Touz, M. C., Conrad, J. T. & Nash, T. E. A novel palmitoyl acyl transferase controls surface protein palmitoylation and cytotoxicity in Giardia lamblia. Mol. Microbiol. 58, 999–1011 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Touz, M. C. et al. Arginine deiminase has multiple regulatory roles in the biology of Giardia lamblia. J. Cell Sci. 121, 2930–2938 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Lopez-Rubio, J. J., Riviere, L. & Scherf, A. Shared epigenetic mechanisms control virulence factors in protozoan parasites. Curr. Opin. Microbiol. 10, 560–568 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Kulakova, L., Singer, S. M., Conrad, J. & Nash, T. E. Epigenetic mechanisms are involved in the control of Giardia lamblia antigenic variation. Mol. Microbiol. 61, 1533–1542 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Prucca, C. G. et al. Antigenic variation in Giardia lamblia is regulated by RNA interference. Nature 456, 750–754 (2008). This article shows the importance of RNAi in the regulation of antigenic variation.

    Article  CAS  PubMed  Google Scholar 

  97. Macrae, I. J. et al. Structural basis for double-stranded RNA processing by Dicer. Science 311, 195–198 (2006). The determination of the protein structure of a Dicer enzyme.

    Article  CAS  PubMed  Google Scholar 

  98. Andersen, Y. S., Gillin, F. D. & Eckmann, L. Adaptive immunity-dependent intestinal hypermotility contributes to host defense against Giardia spp. Infect. Immun. 74, 2473–2476 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Li, E., Zhao, A., Shea-Donohue, T. & Singer, S. M. Mast cell-mediated changes in smooth muscle contractility during mouse giardiasis. Infect. Immun. 75, 4514–4518 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Roxstrom-Lindquist, K., Ringqvist, E., Palm, D. & Svard, S. Giardia lamblia-induced changes in gene expression in differentiated Caco-2 human intestinal epithelial cells. Infect. Immun. 73, 8204–8208 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Troeger, H. et al. Effect of chronic Giardia lamblia infection on epithelial transport and barrier function in human duodenum. Gut 56, 328–335 (2007). A study of human patients with chronic G. intestinalis infection, revealing the importance of apoptosis and a disrupted epithelial barrier in the induction of disease.

    Article  CAS  PubMed  Google Scholar 

  102. Yu, L. C. et al. SGLT-1-mediated glucose uptake protects human intestinal epithelial cells against Giardia duodenalis-induced apoptosis. Int. J. Parasitol. 38, 923–934 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chin, A. C. et al. Strain-dependent induction of enterocyte apoptosis by Giardia lamblia disrupts epithelial barrier function in a caspase-3-dependent manner. Infect. Immun. 70, 3673–3680 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Panaro, M. A. et al. Caspase-dependent apoptosis of the HCT-8 epithelial cell line induced by the parasite Giardia intestinalis. FEMS Immunol. Med. Microbiol. 51, 302–309 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Ringqvist, E. et al. Release of metabolic enzymes by Giardia in response to interaction with intestinal epithelial cells. Mol. Biochem. Parasitol. 159, 85–91 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rodriguez-Fuentes, G. B. et al. Giardia duodenalis: analysis of secreted proteases upon trophozoite-epithelial cell interaction in vitro. Mem. Inst. Oswaldo Cruz 101, 693–696 (2006).

    Article  PubMed  Google Scholar 

  107. Teoh, D. A., Kamieniecki, D., Pang, G. & Buret, A. G. Giardia lamblia rearranges F-actin and α-actinin in human colonic and duodenal monolayers and reduces transepithelial electrical resistance. J. Parasitol. 86, 800–806 (2000).

    CAS  PubMed  Google Scholar 

  108. Buret, A. G., Mitchell, K., Muench, D. G. & Scott, K. G. Giardia lamblia disrupts tight junctional ZO-1 and increases permeability in non-transformed human small intestinal epithelial monolayers: effects of epidermal growth factor. Parasitology 125, 11–19 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Scott, K. G., Meddings, J. B., Kirk, D. R., Lees-Miller, S. P. & Buret, A. G. Intestinal infection with Giardia spp. reduces epithelial barrier function in a myosin light chain kinase-dependent fashion. Gastroenterology 123, 1179–1190 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Oberhuber, G., Kastner, N. & Stolte, M. Giardiasis: a histologic analysis of 567 cases. Scand. J. Gastroenterol. 32, 48–51 (1997).

    Article  CAS  PubMed  Google Scholar 

  111. Scott, K. G., Yu, L. C. & Buret, A. G. Role of CD8+ and CD4+ T lymphocytes in jejunal mucosal injury during murine giardiasis. Infect. Immun. 72, 3536–3542 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cevallos, A., Carnaby, S., James, M. & Farthing, J. G. Small intestinal injury in a neonatal rat model of giardiasis is strain dependent. Gastroenterology 109, 766–773 (1995).

    Article  CAS  PubMed  Google Scholar 

  113. Chavez, B., Knaippe, F., Gonzalez-Mariscal, L. & Martinez-Palomo, A. Giardia lamblia: electrophysiology and ultrastructure of cytopathology in cultured epithelial cells. Exp. Parasitol. 61, 379–389 (1986).

    Article  CAS  PubMed  Google Scholar 

  114. Buret, A., Hardin, J. A., Olson, M. E. & Gall, D. G. Pathophysiology of small intestinal malabsorption in gerbils infected with Giardia lamblia. Gastroenterology 103, 506–513 (1992).

    Article  CAS  PubMed  Google Scholar 

  115. Sogin, M. L., Gunderson, J. H., Elwood, H. J., Alonso, R. A. & Peattie, D. A. Phylogenetic meaning of the kingdom concept: an unusual ribosomal RNA from Giardia lamblia. Science 243, 75–77 (1989). An early molecular study suggesting an early divergence of the genus Giardia and sparking basic research in Giardia spp.

    Article  CAS  PubMed  Google Scholar 

  116. Adl, S. M. et al. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J. Eukaryot. Microbiol. 52, 399–451 (2005).

    Article  PubMed  Google Scholar 

  117. Simpson, A. G., Inagaki, Y. & Roger, A. J. Comprehensive multigene phylogenies of excavate protists reveal the evolutionary positions of “primitive” eukaryotes. Mol. Biol. Evol. 23, 615–625 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Nixon, J. E. et al. A spliceosomal intron in Giardia lamblia. Proc. Natl Acad. Sci. USA 99, 3701–3705 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Andersson, J. O. et al. A genomic survey of the fish parasite Spironucleus salmonicida indicates genomic plasticity among diplomonads and significant lateral gene transfer in eukaryote genome evolution. BMC Genomics 8, 51 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Weiland, M. E., Palm, J. E., Griffiths, W. J., McCaffery, J. M. & Svard, S. G. Characterisation of alpha-1 giardin: an immunodominant Giardia lamblia annexin with glycosaminoglycan-binding activity. Int. J. Parasitol. 33, 1341–1351 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.G.S. is supported by the Swedish Research Council VR–M, the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (Formas) and the Swedish International Development Cooperation Agency (SIDA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Staffan G. Svärd.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Acanthamoeba castellani

Entamoeba invadens

Giardia intestinalis

G. intestinalis str. GS clone H7

G. intestinalis str. WB clone 6

Plasmodium falciparum

Saccharomyces cerevisiae

Trichomonas vaginalis

Trypanosoma brucei

FURTHER INFORMATION

Staffan G. Svärd's homepage

Giardia DB

Glossary

Cyst

The resistant, transmissive form of the giardial parasite.

Relic organelle

A cellular organelle that has evolved into a reduced form with fewer or novel functions.

Excyzoite

A short-lived stage of the giardial parasite that initiates infection.

Trophozoite

The replicating, disease-causing form of the giardial parasite.

Fe–S cluster

An essential cofactor of proteins that are involved in catalysis and electron transport. A cluster contains a sulphide-linked di-, tri- or tetra-iron centre that can exist in one of several oxidation states.

Allelic sequence heterozygosity

The sequence difference between different alleles of the same gene.

Intrinsic pathway

An apoptotic pathway in which the crucial step is the permeabilization of the outer mitochondrial membrane.

Extrinsic pathway

An apoptotic pathway that is mediated by the binding of an extracellular ligand to a transmembrane receptor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ankarklev, J., Jerlström-Hultqvist, J., Ringqvist, E. et al. Behind the smile: cell biology and disease mechanisms of Giardia species. Nat Rev Microbiol 8, 413–422 (2010). https://doi.org/10.1038/nrmicro2317

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2317

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing