Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ciliogenesis: building the cell's antenna

Key Points

  • Cilia are complex sensory and motile organelles found on almost all cells of the body. The complexity of the cilium raises the question of how it is built in an orderly fashion.

  • Ciliary assembly proceeds in a stepwise manner: centrioles form basal bodies, dock on the cortex and induce outgrowth of the cilium. Assembly also involves protein-trafficking from the cytoplasm to the base of the cilium and selective import of ciliary proteins through a channel that may be analogous to the nuclear pore complex.

  • Sustained growth of cilia requires active transport, which is provided by the intraflagellar transport (IFT) system.

  • Assembly of cilia is a function of cell cycle stage and is tightly regulated to control the length of the final structure.

  • Ciliary length seems to result from a continuous steady-state balance of assembly and disassembly, with the inherent length-dependence of IFT-mediated transport leading to a length-dependent assembly rate.

Abstract

The cilium is a complex organelle, the assembly of which requires the coordination of motor-driven intraflagellar transport (IFT), membrane trafficking and selective import of cilium-specific proteins through a barrier at the ciliary transition zone. Recent findings provide insights into how cilia assemble and disassemble in synchrony with the cell cycle and how the balance of ciliary assembly and disassembly determines the steady-state ciliary length, with the inherent length-dependence of IFT rendering the ciliary assembly rate a decreasing function of length. As cilia are important in sensing and processing developmental signals and directing the flow of fluids such as mucus, defects in ciliogenesis and length control are likely to underlie a range of cilium-related human diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The architecture of cilia.
Figure 2: Intraflagellar transport machinery.
Figure 3: Ciliary trafficking pathways.
Figure 4: Synchronization of ciliary assembly and disassembly with the cell cycle.
Figure 5: Ciliary length-control mechanisms.

Similar content being viewed by others

References

  1. Singla, V. & Reiter, J. F. The primary cilium as the cell's antenna: signaling at a sensory organelle. Science 313, 629–633 (2006).

    CAS  PubMed  Google Scholar 

  2. Berbari, N. F., O'Connor, A. K., Haycraft, C. J. & Yoder, B. K. The primary cilium as a complex signaling center. Curr. Biol. 19, R526–R535 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Gherman, A., Davis, E. E. & Katsanis, N. The ciliary proteome database: an integrated community resource for the genetic and functional dissection of cilia. Nature Genet. 38, 961–962 (2006).

    CAS  PubMed  Google Scholar 

  4. Gaertig, J. & Wloga, D. Ciliary tubulin and its post-translational modifications. Curr. Top. Dev. Biol. 85, 83–113 (2008).

    CAS  PubMed  Google Scholar 

  5. Thazhath, R. et al. Cell context-specific effects of the β-tubulin glycylation domain on assembly and size of microtubular organelles. Mol. Biol. Cell 15, 4136–4147 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Pathak, N., Obara, T., Mangos, S., Liu, Y. & Drummond, I. A. The zebrafish fleer gene encodes an essential regulator of cilia tubulin polyglutamylation. Mol. Biol. Cell 18, 4353–4364 (2007). Demonstrates that a protein required for tubulin modification also plays a part in building the outer doublet microtubule structure.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wloga, D. et al. TTLL3 is a tubulin glycine ligase that regulates the assembly of cilia. Dev. Cell 16, 867–876 (2009).

    CAS  PubMed  Google Scholar 

  8. Kubo, T., Yanagisawa, H., Yagi, T., Hirono, M. & Kamiya, R. Tubulin polyglutamylation regulates axonemal motility by modulating activities of inner-arm dyneins. Curr. Biol. 20, 441–445 (2010).

    CAS  PubMed  Google Scholar 

  9. Suryavanshi, S. et al. Tubulin glutamylation regulates ciliary motility by altering inner dynein arm activity. Curr. Biol. 20, 435–440 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ikegami, K., Sato, S., Nakamura, K., Ostrowski, L. E. & Setou, M. Tubulin polyglutamylation is essential for airway ciliary function through the regulation of beating asymmetry. Proc. Natl Acad. Sci. USA 107, 10490–10495 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Steffen, W. & Linck, R. W. Evidence for tektins in centrioles and axonemal microtubules. Proc. Natl Acad. Sci. USA 85, 2643–2647 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Linck, R. W. & Norrander, J. M. Protofilament ribbon compartments of ciliary and flagellar microtubules. Protist 154, 299–311 (2003).

    CAS  PubMed  Google Scholar 

  13. Nojima, D., Linck, R. W. & Egelman, E. H. At least one of the protofilaments in flagellar microtubules is not composed of tubulin. Curr. Biol. 5, 158–167 (1995).

    CAS  PubMed  Google Scholar 

  14. Sui, H. & Downing, K. H. Molecular architecture of axonemal microtubule doublets revealed by cryo-electron tomography. Nature 442, 475–478 (2006).

    CAS  PubMed  Google Scholar 

  15. Nicastro, D. et al. The molecular architecture of axonemes revealed by cryoelectron tomography. Science 313, 944–948 (2006).

    CAS  PubMed  Google Scholar 

  16. Sorokin, S. Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J. Cell Biol. 15, 363–377 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sorokin, S. P. Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J. Cell Sci. 3, 207–230 (1968). Classic ultrastructural description of the individual steps that lead to the production of cilia from basal bodies.

    CAS  PubMed  Google Scholar 

  18. Molla-Herman, A. et al. The ciliary pocket: an endocytic membrane domain at the base of primary and motile cilia. J. Cell Sci. 123, 1785–1795 (2010).

    CAS  PubMed  Google Scholar 

  19. Rosenbaum, J. L. & Child., F. M. Flagellar regeneration in protozoan flagellates. J. Cell Biol. 34, 345–364 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sinden, R. E., Canning, E. U. & Spain, B. Gametogenesis and fertilization in Plasmodium yoelii nigeriensis: a transmission electron microscope study. Proc. R. Soc. Lond. B 193, 55–76 (1976).

    CAS  PubMed  Google Scholar 

  21. Marshall, W. F. & Rosenbaum, J. L. Intraflagellar transport balances continuous turnover of outer doublet microtubules: implications for flagellar length control. J. Cell Biol. 155, 405–414 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Stephens, R. E. Synthesis and turnover of embryonic sea urchin ciliary proteins during selective inhibition of tubulin synthesis and assembly. Mol. Biol. Cell 8, 2187–2198 (1997). A dramatic demonstration that microtubules in the ciliary axoneme are not static but undergo continuous turnover.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Song, L. & Dentler, W. L. Flagellar protein dynamics in Chlamydomonas. J. Biol. Chem. 276, 29754–29763 (2001).

    CAS  PubMed  Google Scholar 

  24. Blaineau, C. et al. A novel microtubule-depolymerizing kinesin involved in length control of a eukaryotic flagellum. Curr. Biol. 17, 778–782 (2007).

    CAS  PubMed  Google Scholar 

  25. Dawson, S. C. et al. Kinesin-13 regulates flagellar, interphase, and mitotic microtubule dynamics in Giardia intestinalis. Eukaryotic Cell 6, 2354–2364 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Piao, T. et al. A microtubule depolymerizing kinesin functions during both flagellar disassembly and flagellar assembly in Chlamydomonas. Proc. Natl Acad. Sci. USA 106, 4713–4718 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Pedersen, L. B. & Rosenbaum, J. L. Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling. Curr. Top. Dev. Biol. 85, 23–61 (2008).

    CAS  PubMed  Google Scholar 

  28. Hao, L. & Scholey, J. M. Intraflagellar transport at a glance. J. Cell Sci. 122, 889–892 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kozminski, K. G., Johnson, K. A., Forscher, P. & Rosenbaum, J. L. A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc. Natl Acad. Sci. USA 90, 5519–5523 (1993). The first reported observation of intraflagellar transport detected by differential interference contrast microscopy analysis of C. reinhardtii flagella.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kozminski, K. G., Beech, P. L. & Rosenbaum, J. L. The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with the flagellar membrane. J. Cell Biol. 131, 1517–1527 (1995).

    CAS  PubMed  Google Scholar 

  31. Pigino, G. et al. Electron-tomographic analysis of intraflagellar transport particle trains in situ. J. Cell Biol. 187, 135–148 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Rosenbaum, J. L. & Witman, G. B. Intraflagellar transport. Nature Rev. Mol. Cell Biol. 3, 813–825 (2002).

    CAS  Google Scholar 

  33. Cole, D. G. et al. Novel heterotrimeric kinesin-related protein purified from sea urchin eggs. Nature 366, 268–270 (1993).

    CAS  PubMed  Google Scholar 

  34. Morris, R. L. & Scholey, J. M. Heterotrimeric kinesin-II is required for the assembly of motile 9+2 ciliary axonemes on sea urchin embryos. J. Cell Biol. 138, 1009–1022 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Nonaka, S. et al. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95, 829–837 (1998).

    CAS  PubMed  Google Scholar 

  36. Mueller, J., Perrone, C. A., Bower, R., Cole, D. G. & Porter, M. E. The FLA3 KAP subunit is required for localization of kinesin-2 to the site of flagellar assembly and processive anterograde intraflagellar transport. Mol. Biol. Cell 16, 1341–1354 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Snow, J. J. et al. Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons. Nature Cell Biol. 6, 1109–1113 (2004).

    CAS  PubMed  Google Scholar 

  38. Pan, X. et al. Mechanism of transport of IFT particles in C. elegans cilia by the concerted action of kinesin-II and OSM-3 motors. J. Cell Biol. 174, 1035–1045 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Evans, J. E. et al. Functional modulation of IFT kinesins extends the sensory repertoire of ciliated neurons in Caenorhabditis elegans. J. Cell Biol. 172, 663–669 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mukhopadhyay, S. et al. Distinct IFT mechanisms contribute to the generation of ciliary structural diversity in C. elegans. EMBO J. 26, 2966–2980 (2007). By analyzing the structure of different classes of cilia in worms carrying IFT mutations, the authors show that different components of the IFT machinery are differentially required for building different cilia.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Pazour, G. J., Wilkerson, C. G. & Witman, G. B. A dynein light chain is essential for the retrograde particle movement of intraflagellar transport (IFT). J. Cell Biol. 141, 979–992 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Pazour, G. J., Dickert, B. L. & Witman, G. B. The DHC1b (DHC2) isoform of cytoplasmic dynein is required for flagellar assembly. J. Cell Biol. 144, 473–481 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Porter, M. E., Bower, R., Knott, J. A., Byrd, P. & Dentler, W. Cytoplasmic dynein heavy chain 1b is required for flagellar assembly in Chlamydomonas. Mol. Biol. Cell 10, 693–712 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Signor, D. et al. Role of a class DHC1b dynein in retrograde transport of IFT motors and IFT raft particles along cilia, but not dendrites, in chemosensory neurons of living Caenorhabditis elegans. J. Cell Biol. 147, 519–530 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hou, Y., Pazour, G. J. & Witman, G. B. A dynein light intermediate chain, D1bLIC, is required for retrograde intraflagellar transport. Mol. Biol. Cell 15, 4382–4394 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Huangfu, D. & Anderson, K. V. Cilia and Hedgehog responsiveness in the mouse. Proc. Natl Acad. Sci. USA 102, 11325–11330 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. May, S. R. et al. Loss of the retrograde motor for IFT disrupts localization of Smo to cilia and prevents the expression of both activator and repressor functions of Gli. Dev. Biol. 287, 378–389 (2005).

    CAS  PubMed  Google Scholar 

  48. Piperno, G. & Mead, K. Transport of a novel complex in the cytoplasmic matrix of Chlamydomonas flagella. Proc. Natl Acad. Sci. USA 94, 4457–4462 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Cole, D. G. et al. Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J. Cell Biol. 141, 993–1008 (1998). The first biochemical analysis of IFT components, exploiting the advantages of C. reinhardtii for both biochemistry and genetics, and leading to the realization that proteins involved in IFT are related to polycystic kidney disease gene products.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Cole, D. G. The intraflagellar transport machinery of Chlamydomonas reinhardtii. Traffic 4, 435–442 (2003).

    CAS  PubMed  Google Scholar 

  51. Avidor-Reiss, T. et al. Decoding cilia function: defining specialized genes required for compartmentalized cilia biogenesis. Cell 117, 527–539 (2004).

    CAS  PubMed  Google Scholar 

  52. Wang, Z., Fan, Z., Williamson, S. M. & Qin, H. Intraflagellar transport (IFT) protein IFT25 is a phosphoprotein component of IFT complex B and physically interacts with IFT27 in Chlamydomonas. PLoS ONE 4, e5384 (2009).

    PubMed  PubMed Central  Google Scholar 

  53. Follit, J. A., Xu, F., Keady, B. T. & Pazour, G. J. Characterization of mouse IFT complex B. Cell Motil. Cytoskeleton 66, 457–468 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lechtreck, K., Luro, S., Awata, J. & Witman, G. B. HA-tagging of putative flagellar proteins in Chlamydomonas reinhardtii identifies a novel protein of intraflagellar transport complex B. Cell Motil. Cytoskeleton 66, 469–482 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Qin, H., Wang, Z., Diener, D. & Rosenbaum, J. Intraflagellar transport protein 27 is a small G protein involved in cell-cycle control. Curr. Biol. 17, 193–202 (2007). Reports the discovery of a key IFT protein that is a member of a protein family involved in many aspects of membrane trafficking.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Schafer, J. C. et al. IFTA-2 is a conserved cilia protein involved in pathways regulating longevity and dauer formation in Caenorhabditis elegans. J. Cell Sci. 119, 4088–4100 (2006).

    CAS  PubMed  Google Scholar 

  57. Ou, G., Blacque, O. E., Snow, J. J., Leroux, M. R. & Scholey, J. M. Functional coordination of intraflagellar transport motors. Nature 436, 583–587 (2005).

    CAS  PubMed  Google Scholar 

  58. Fan, Z. et al. Chlamydomonas IFT70/CrDYF-1 is a core component of IFT particle complex B and is required for flagellar assembly. Mol. Biol. Cell 21, 2696–2706 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Dave, D., Wloga, D., Sharma, N. & Gaertig, J. DYF-1 is required for assembly of the axoneme in Tetrahymena thermophila. Eukaryotic Cell 8, 1397–1406 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Fujiwara, M., Ishihara, T. & Katsura, I. A novel WD40 protein, CHE-2, acts cell-autonomously in the formation of C. elegans sensory cilia. Development 126, 4839–4848 (1999).

    CAS  PubMed  Google Scholar 

  61. Pazour, G. J. et al. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J. Cell Biol. 151, 709–718 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Brazelton, W. J., Amundsen, C. D., Silflow, C. D. & Lefebvre, P. A. The bld1 mutation identifies the Chlamydomonas osm-6 homolog as a gene required for flagellar assembly. Curr. Biol. 11, 1591–1594 (2001).

    CAS  PubMed  Google Scholar 

  63. Deane, J. A., Cole, D. G., Seeley, E. S., Diener, D. R. & Rosenbaum, J. L. Localization of intraflagellar transport protein IFT52 identifies basal body transitional fibers as the docking site for IFT particles. Curr. Biol. 11, 1586–1590 (2001).

    CAS  PubMed  Google Scholar 

  64. Haycraft, C. J., Schafer, J. C., Zhang, Q., Taulman, P. D. & Yoder, B. K. Identification of CHE-13, a novel intraflagellar transport protein required for cilia formation. Exp. Cell Res. 284, 251–263 (2003).

    CAS  PubMed  Google Scholar 

  65. Huangfu, D. et al. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426, 83–87 (2003). The first report linking cilia with Hedgehog signalling.

    CAS  PubMed  Google Scholar 

  66. Sun, Z. et al. A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney. Development 131, 4085–4093 (2004). Describes the use of a forward genetic screen in zebrafish to find candidate cystic kidney disease genes, which revealed a number of IFT protein-encoding genes.

    CAS  PubMed  Google Scholar 

  67. Follit, J. A., Tuft, R. A., Fogarty, K. E. & Pazour, G. J. The intraflagellar transport protein IFT20 is associated with the Golgi complex and is required for cilia assembly. Mol. Biol. Cell 17, 3781–3792 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Iomini, C., Babaev-Khaimov, V., Sassaroli, M. & Piperno, G. Protein particles in Chlamydomonas flagella undergo a transport cycle consisting of four phases. J. Cell Biol. 153, 13–24 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Efimenko, E. et al. Caenorhabditis elegans DYF-2, an orthologue of human WDR19, is a component of the intraflagellar transport machinery in sensory cilia. Mol. Biol. Cell 17, 4801–4811 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Tsao, C. & Gorovsky, M. A. Tetrahymena IFT122A is not essential for cilia assembly but plays a role in returning IFT proteins from the ciliary tip to the cell body. J. Cell Sci. 121, 428–436 (2008).

    CAS  PubMed  Google Scholar 

  71. Absalon, S. et al. Intraflagellar transport and functional analysis of genes required for flagellum formation in trypanosomes. Mol. Biol. Cell 19, 929–944 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Tran, P. V. et al. THM1 negatively modulates mouse sonic hedgehog signal transduction and affects retrograde intraflagellar transport in cilia. Nature Genet. 40, 403–410 (2008).

    CAS  PubMed  Google Scholar 

  73. Iomini, C., Li, L., Esparza, J. M. & Dutcher, S. K. Retrograde intraflagellar transport mutants identify complex A proteins with multiple genetic interactions in Chlamydomonas reinhardtii. Genetics 183, 885–896 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Piperno, G. et al. Distinct mutants of retrograde intraflagellar transport (IFT) share similar morphological and molecular defects. J. Cell Biol. 143, 1591–1601 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Murayama, T., Toh, Y., Ohshima, Y. & Koga, M. The dyf-3 gene encodes a novel protein required for sensory cilium formation in Caenorhabditis elegans. J. Mol. Biol. 346, 677–687 (2005).

    CAS  PubMed  Google Scholar 

  76. Blacque, O. E. et al. Functional genomics of the cilium, a sensory organelle. Curr. Biol. 15, 935–941 (2005).

    CAS  PubMed  Google Scholar 

  77. Ou, G., Qin, H., Rosenbaum, J. L. & Scholey, J. M. The PKD protein qilin undergoes intraflagellar transport. Curr. Biol. 15, R410–R411 (2005).

    CAS  PubMed  Google Scholar 

  78. Ou, G. et al. Sensory ciliogenesis in Caenorhabditis elegans: assignment of IFT components into distinct modules based on transport and phenotypic profiles. Mol. Biol. Cell 18, 1554–1569 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Mukhopadhyay, S. et al. TULP3 bridges the IFT-A complex and membrane phosphoinositides to promote trafficking of G protein-coupled receptors into primary cilia. Genes Dev. 24, 2180–2193 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Blacque, O. E. et al. Loss of C. elegans BBS-7 and BBS-8 protein function results in cilia defects and compromised intraflagellar transport. Genes Dev. 18, 1630–1642 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Nachury, M. V. et al. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 129, 1201–1213 (2007). Biochemical- and RNAi-based analysis of the BBSome, suggesting a role for it in ciliary assembly via regulation of membrane trafficking.

    CAS  PubMed  Google Scholar 

  82. Mykytyn, K. et al. Bardet-Biedl syndrome type 4 (BBS4)-null mice implicate Bbs4 in flagella formation but not global cilia assembly. Proc. Natl Acad. Sci. USA 101, 8664–8669 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Nishimura, D. Y. et al. Bbs2-null mice have neurosensory deficits, a defect in social dominance, and retinopathy associated with mislocalization of rhodopsin. Proc. Natl Acad. Sci. USA 101, 16588–16593 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Fath, M. A. et al. Mkks-null mice have a phenotype resembling Bardet-Biedl syndrome. Hum. Mol. Genet. 14, 1109–1118 (2005).

    CAS  PubMed  Google Scholar 

  85. Davis, R. E. et al. A knockin mouse model of the Bardet-Biedl syndrome 1 M390R mutation has cilia defects, ventriculomegaly, retinopathy, and obesity. Proc. Natl Acad. Sci. USA 104, 19422–19427 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Loktev, A. V. et al. A BBSome subunit links ciliogenesis, microtubule stability, and acetylation. Dev. Cell 15, 854–865 (2008).

    CAS  PubMed  Google Scholar 

  87. Tan, P. L. et al. Loss of Bardet Biedl syndrome proteins causes defects in peripheral sensory innervation and function. Proc. Natl Acad. Sci. USA 104, 17524–17529 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Berbari, N. F., Lewis, J. S., Bishop, G. A., Askwith, C. C. & Mykytyn, K. Bardet-Biedl syndrome proteins are required for the localization of G protein-coupled receptors to primary cilia. Proc. Natl Acad. Sci. USA 105, 4242–4246 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Lechtreck, K. et al. The Chlamydomonas reinhardtii BBSome is an IFT cargo required for export of specific signaling proteins from flagella. J. Cell Biol. 187, 1117–1132 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Qin, H., Diener, D. R., Geimer, S., Cole, D. G. & Rosenbaum, J. L. Intraflagellar transport (IFT) cargo: IFT transports flagellar precursors to the tip and turnover products to the cell body. J. Cell Biol. 164, 255–266 (2004). Presents the first direct evidence that IFT particles can actually bind cargo, by showing that many flagellar proteins co-immunoprecipitate with IFT particles isolated from C. reinhardtii flagella.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Marshall, W. F., Qin, H., Rodrigo Brenni, M. & Rosenbaum, J. L. Flagellar length control system: testing a simple model based on intraflagellar transport and turnover. Mol. Biol. Cell 16, 270–278 (2005). Describes several experiments to test the balance-point model for length control, including testing predictions concerning the variation of flagellar length with number.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Qin, H. et al. Intraflagellar transport is required for the vectorial movement of TRPV channels in the ciliary membrane. Curr. Biol. 15, 1695–1699 (2005). Demonstrates that IFT can move channels in the ciliary membrane, suggesting a possible influence of IFT on signalling activity.

    CAS  PubMed  Google Scholar 

  93. Huang, K. et al. Function and dynamics of PKD2 in Chlamydomonas reinhardtii flagella. J. Cell Biol. 179, 501–514 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Hou, Y. et al. Functional analysis of an individual IFT protein: IFT46 is required for transport of outer dynein arms into flagella. J. Cell Biol. 176, 653–665 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Ahmed, N. T., Gao, C., Lucker, B. F., Cole, D. G. & Mitchell, D. R. ODA16 aids axonemal outer row dynein assembly through an interaction with the intraflagellar transport machinery. J. Cell Biol. 183, 313–322 (2008). Provides the first evidence that IFT particles may use adaptor proteins to carry specific subsets of cargo.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Piperno, G., Mead, K. & Henderson, S. Inner dynein arms but not outer dynein arms require the activity of kinesin homologue protein KHP1FLA10 to reach the distal part of flagella in Chlamydomonas. J. Cell Biol. 133, 371–379 (1996).

    CAS  PubMed  Google Scholar 

  97. Gao, C., Wang, G., Amack, J. D. & Mitchell, D. R. Oda16/Wdr69 is essential for axonemal dynein assembly and ciliary motility during zebrafish embryogenesis. Dev. Dyn. 239, 2190–2197 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Omori, Y. et al. elipsa is an early determinant of ciliogenesis that links the IFT particle to membrane-associated small GTPase Rab8. Nature Cell Biol. 10, 437–444 (2008).

    CAS  PubMed  Google Scholar 

  99. Li, C. et al. An essential role for DYF-11/MIP-T3 in assembling functional intraflagellar transport complexes. PLoS Genet. 4, e1000044 (2008).

    PubMed  PubMed Central  Google Scholar 

  100. Yoshimura, S., Egerer, J., Fuchs, E., Haas, A. K. & Barr, F. A. Functional dissection of Rab GTPases involved in primary cilium formation. J. Cell Biol. 178, 363–369 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Jin, H. et al. The conserved Bardet-Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia. Cell 141, 1208–1219 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Jékely, G. & Arendt, D. Evolution of intraflagellar transport from coated vesicles and autogenous origin of the eukaryotic cilium. Bioessays 28, 191–198 (2006).

    PubMed  Google Scholar 

  103. Finetti, F. et al. Intraflagellar transport is required for polarized recycling of the TCR/CD3 complex to the immune synapse. Nature Cell Biol. 11, 1332–1339 (2009).

    CAS  PubMed  Google Scholar 

  104. Sedmak, T. & Wolfrum, U. Intraflagellar transport molecules in ciliary and nonciliary cells of the retina. J. Cell Biol. 189, 171–186 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Craige, B. et al. CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content. J. Cell Biol. 190, 927–940 (2010). Identifies a key regulator of protein entry through the ciliary transition zone.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Hu, Q. et al. A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science 329, 436–439 (2010). Presents evidence that septins, which form barriers to the lateral diffusion of proteins through the cell membrane during cell division, perform a similar function at the base of cilia.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Dishinger, J. F. et al. Ciliary entry of the kinesin-2 motor KIF17 is regulated by importin-β2 and RanGTP. Nature Cell Biol. 12, 703–710 (2010). Suggests that ciliary import may be regulated by some of the same proteins that mediate vectorial transport through the nuclear pore complex.

    CAS  PubMed  Google Scholar 

  108. Geng, L. et al. Polycystin-2 traffics to cilia independently of polycystin-1 by using an N-terminal RVxP motif. J. Cell. Sci. 119, 1383–1395 (2006).

    CAS  PubMed  Google Scholar 

  109. Jenkins, P. M. et al. Ciliary targeting of olfactory CNG channels requires the CNGB1b subunit and the kinesin-2 motor protein, KIF17. Curr. Biol. 16, 1211–1216 (2006).

    CAS  PubMed  Google Scholar 

  110. Mazelova, J. et al. Ciliary targeting motif VxPx directs assembly of a trafficking module through Arf4. EMBO J. 28, 183–192 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Tao, B. et al. Cystin localizes to primary cilia via membrane microdomains and a targeting motif. J. Am. Soc. Nephrol. 20, 2570–2580 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Follit, J. A., Li, L., Vucica, Y. & Pazour, G. J. The cytoplasmic tail of fibrocystin contains a ciliary targeting sequence. J. Cell Biol. 188, 21–28 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Nachury, M. V., Seeley, E. S. & Jin, H. Trafficking to the ciliary membrane: how to get across the periciliary diffusion barrier? Annu. Rev. Cell Dev. Biol. 26, 59–87 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Iomini, C., Tejada, K., Mo, W., Vaananen, H. & Piperno, G. Primary cilia of human endothelial cells disassemble under laminar shear stress. J. Cell Biol. 164, 811–817 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Besschetnova, T. Y. et al. Identification of signaling pathways regulating primary cilium length and flow-mediated adaptation. Curr. Biol. 20, 182–187 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Pitaval, A., Tseng, Q., Bornens, M. & Théry, M. Cell shape and contractility regulate ciliogenesis in cell cycle-arrested cells. J. Cell Biol. 191, 303–312 (2010). By growing cells on micropatterned substrates, the authors provide evidence that cell shape and spreading influences ciliogenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Parker, J. D. K. et al. Centrioles are freed from cilia by severing prior to mitosis. Cytoskeleton 67, 425–430 (2010).

    PubMed  Google Scholar 

  118. Pan, J., Wang, Q. & Snell, W. J. An aurora kinase is essential for flagellar disassembly in Chlamydomonas. Dev. Cell 6, 445–451 (2004).

    CAS  PubMed  Google Scholar 

  119. Pan, J. & Snell, W. J. Chlamydomonas shortens its flagella by activating axonemal disassembly, stimulating IFT particle trafficking, and blocking anterograde cargo loading. Dev. Cell 9, 431–438 (2005).

    CAS  PubMed  Google Scholar 

  120. Kinzel, D. et al. Pitchfork regulates primary cilia disassembly and left-right asymmetry. Dev. Cell 19, 66–77 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Pugacheva, E. N., Jablonski, S. A., Hartman, T. R., Henske, E. P. & Golemis, E. A. HEF1-dependent Aurora A activation induces disassembly of the primary cilium. Cell 129, 1351–1363 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Hubbert, C. et al. HDAC6 is a microtubule-associated deacetylase. Nature 417, 455–458 (2002).

    CAS  PubMed  Google Scholar 

  123. Anderson, C. T. & Stearns, T. Centriole age underlies asynchronous primary cilium growth in mammalian cells. Curr. Biol. 19, 1498–1502 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Thomas, J. et al. Transcriptional control of genes involved in ciliogenesis: a first step in making cilia. Biol. Cell 102, 499–513 (2010).

    CAS  PubMed  Google Scholar 

  125. Stolc, V., Samanta, M. P., Tongprasit, W. & Marshall, W. F. Genome-wide transcriptional analysis of flagellar regeneration in Chlamydomonas reinhardtii identifies orthologs of ciliary disease genes. Proc. Natl Acad. Sci. USA 102, 3703–3707 (2005). The first transcriptomic analysis of the genomic programme that is activated during cilia assembly.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Yu, X., Ng, C. P., Habacher, H. & Roy, S. Foxj1 transcription factors are master regulators of the motile ciliogenic program. Nature Genet. 40, 1445–1453 (2008).

    CAS  PubMed  Google Scholar 

  127. Engel, B. D., Ludington, W. B. & Marshall, W. F. Intraflagellar transport particle size scales inversely with flagellar length: revisiting the balance-point length control model. J. Cell Biol. 187, 81–89 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Pedersen, L. B. et al. Chlamydomonas IFT172 is encoded by FLA11, interacts with CrEB1, and regulates IFT at the flagellar tip. Curr. Biol. 15, 262–266 (2005).

    CAS  PubMed  Google Scholar 

  129. Tsao, C. & Gorovsky, M. A. Different effects of Tetrahymena IFT172 domains on anterograde and retrograde intraflagellar transport. Mol. Biol. Cell 19, 1450–1461 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Pedersen, L. B., Geimer, S. & Rosenbaum, J. L. Dissecting the molecular mechanisms of intraflagellar transport in Chlamydomonas. Curr. Biol. 16, 450–459 (2006).

    CAS  PubMed  Google Scholar 

  131. Engel, B. D. et al. Total internal reflection fluorescence (TIRF) microscopy of Chlamydomonas flagella. Methods Cell Biol. 93, 157–177 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Sleigh, M. A. The Biology of Cilia and Flagella. (Macmillan New York, 1962).

    Google Scholar 

  133. Hartman, T. R. et al. The tuberous sclerosis proteins regulate formation of the primary cilium via a rapamycin-insensitive and polycystin 1-independent pathway. Hum. Mol. Genet. 18, 151–163 (2009).

    CAS  PubMed  Google Scholar 

  134. DiBella, L. M., Park, A. & Sun, Z. Zebrafish Tsc1 reveals functional interactions between the cilium and the TOR pathway. Hum. Mol. Genet. 18, 595–606 (2009).

    CAS  PubMed  Google Scholar 

  135. Bonnet, C. S. et al. Defects in cell polarity underlie TSC and ADPKD-associated cystogenesis. Hum. Mol. Genet. 18, 2166–2176 (2009).

    CAS  PubMed  Google Scholar 

  136. Omori, Y. et al. Negative regulation of ciliary length by ciliary male germ cell-associated kinase (Mak) is required for retinal photoreceptor survival. Proc. Natl Acad. Sci. USA 107, 22671–22676 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Tammachote, R. et al. Ciliary and centrosomal defects associated with mutation and depletion of the Meckel syndrome genes MKS1 and MKS3. Hum. Mol. Genet. 18, 3311–3323 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Williams, C. L., Masyukova, S. V. & Yoder, B. K. Normal ciliogenesis requires synergy between the cystic kidney disease genes MKS-3 and NPHP-4. J. Am. Soc. Nephrol. 21, 782–793 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Wemmer, K. A. & Marshall, W. F. Flagellar length control in Chlamydomonas — a paradigm for organelle size regulation. Int. Rev. Cytol. 260, 175–212 (2007).

    CAS  PubMed  Google Scholar 

  140. Berman, S. A., Wilson, N. F., Haas, N. A. & Lefebvre, P. A. A novel MAP kinase regulates flagellar length in Chlamydomonas. Curr. Biol. 13, 1145–1149 (2003). Describes the identification of a MAP kinase family member, LF4, that regulates flagellar length via an unknown mechanism.

    CAS  PubMed  Google Scholar 

  141. Tam, L., Wilson, N. F. & Lefebvre, P. A. A CDK-related kinase regulates the length and assembly of flagella in Chlamydomonas. J. Cell Biol. 176, 819–829 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Ko, H. W. et al. Broad-minded links cell cycle-related kinase to cilia assembly and Hedgehog signal transduction. Dev. Cell 18, 237–247 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Wiese, M., Kuhn, D. & Grünfelder, C. G. Protein kinase involved in flagellar-length control. Eukaryotic Cell 2, 769–777 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Wilson, N. F. & Lefebvre, P. A. Regulation of flagellar assembly by glycogen synthase kinase 3 in Chlamydomonas reinhardtii. Eukaryotic Cell 3, 1307–1319 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Levy, E. M. Flagellar elongation as a moving boundary problem. Bull. Math. Biol. 36, 265–273 (1974).

    CAS  PubMed  Google Scholar 

  146. Child., F. M. In Cell Reproduction: In Honor of Daniel Mazia. ICN-UCLA Symposia on Molecular and Cellular Biology (Eds Dirksen, E. R., Prescott, D. M. & Fox, C. F.) Vol. XII (Academic Press, New York, 1978).

    Google Scholar 

  147. Bressloff, P. C. Stochastic model of intraflagellar transport. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73, 061916 (2006).

    PubMed  Google Scholar 

  148. Stephens, R. E. Ciliogenesis in sea urchin embryos−a subroutine in the program of development. Bioessays 17, 331–340 (1995).

    CAS  PubMed  Google Scholar 

  149. Walther, Z., Vashishtha, M. & Hall, J. L. The Chlamydomonas FLA10 gene encodes a novel kinesin-homologous protein. J. Cell Biol. 126, 175–188 (1994).

    CAS  PubMed  Google Scholar 

  150. Pazour, G. J., Agrin, N., Leszyk, J. & Witman, G. B. Proteomic analysis of a eukaryotic cilium. J. Cell Biol. 170, 103–113 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Tam, L., Dentler, W. L. & Lefebvre, P. A. Defective flagellar assembly and length regulation in LF3 null mutants in Chlamydomonas. J. Cell Biol. 163, 597–607 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Afzelius, B. A. Cilia-related diseases. J. Pathol. 204, 470–477 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Lechtreck, K. F., Delmotte, P., Robinson, M. L., Sanderson, M. J. & Witman, G. B. Mutations in hydin impair ciliary motility in mice. J. Cell Biol. 180, 633–643 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank B. Engel and members of the Marshall laboratory for helpful discussions and editorial comments. We also thank S. Nonaka for providing the nodal cilia picture. We apologize to those authors whose work we could not cite owing to space limitations. This work was supported by the US National Institutes of Health and the W. M. Keck Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wallace F. Marshall.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Wallace F. Marshall's homepage

Glossary

Leftward flow

Flow of extraembryonic fluid across the node surface that moves to the left side of the animal.

Node

The anterior end of the primitive streak. Leftward flow in the node is important to determine the left–right axis of the body.

Axoneme

The insoluble microtubule-based structural scaffold of a cilium.

Basal body

A centriole that is acting to nucleate a cilium.

B tubule

The incomplete second microtubule that, together with the A tubule, forms the outer doublet of the ciliary axoneme.

Primary cilium

A cilium, the basal body of which is the mother centriole that the cell inherited during the previous mitosis. The term is meant to contrast with 'secondary cilia', which refers to any other cilia that form later in the cell cycle.

Centriole

A cylindrical array of nine microtubule triplets that is found in the core of the centrosome.

Polyglutamylation

Modification by addition of multiple glutamate residues onto a protein.

Bardet–Biedl syndrome

A ciliopathy that is characterized by obesity, retinitis pigmentosa, polydactyly and cognitive disability.

Endocytosis

The pathway by which cells take up molecules from the plasma membrane by forming invaginations that close off to become intracellular vesicles.

Guanine nucleotide exchange factor

A protein that stimulates exchange of GDP for GTP on GTP-binding proteins, including G-proteins and GTPases.

Ciliary waveform

A type of ciliary motility that is characterized by large asymmetrical bending motions, as opposed to the flagellar waveform which is characterized by a symmetrical sine-wave-like bending pattern.

Nephronophthisis

A paediatric kidney cyst disease that is characterized by normal-sized kidneys with abnormally dilated ducts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishikawa, H., Marshall, W. Ciliogenesis: building the cell's antenna. Nat Rev Mol Cell Biol 12, 222–234 (2011). https://doi.org/10.1038/nrm3085

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3085

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing