Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biomolecular condensates: organizers of cellular biochemistry

Key Points

  • In addition to canonical membrane-bound organelles, eukaryotic cells contain numerous membraneless compartments, or biomolecular condensates, that concentrate specific collections of proteins and nucleic acids.

  • Biomolecular condensates behave as phase-separated liquids and are enriched in multivalent molecules.

  • Theoretical concepts from polymer and physical chemistry regarding the behaviour of multivalent molecules provide a mechanistic framework that can explain a wide range of cellular behaviours exhibited by biomolecular condensates, including plausible mechanisms by which their assembly, composition, and biochemical and cellular functions can be regulated.

Abstract

Biomolecular condensates are micron-scale compartments in eukaryotic cells that lack surrounding membranes but function to concentrate proteins and nucleic acids. These condensates are involved in diverse processes, including RNA metabolism, ribosome biogenesis, the DNA damage response and signal transduction. Recent studies have shown that liquid–liquid phase separation driven by multivalent macromolecular interactions is an important organizing principle for biomolecular condensates. With this physical framework, it is now possible to explain how the assembly, composition, physical properties and biochemical and cellular functions of these important structures are regulated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biomolecular condensates in eukaryotic cells.
Figure 2: Different modes of multivalent interactions in synthetic and natural systems undergoing liquid–liquid phase separation.
Figure 3: A model for compositional control of biomolecular condensates.
Figure 4: Changing material properties of biomolecular condensates.
Figure 5: Functional consequences of forming biomolecular condensates.

Similar content being viewed by others

References

  1. Mao, Y. S., Zhang, B. & Spector, D. L. Biogenesis and function of nuclear bodies. Trends Genet. 27, 295–306 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Decker, C. J. & Parker, R. P-Bodies and stress granules: possible roles in the control of translation and mRNA degradation. Cold Spring Harb. Perspect. Biol. 4, a012286 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Wu, H. Higher-order assemblies in a new paradigm of signal transduction. Cell 153, 287–292 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pederson, T. The nucleolus. Cold Spring Harb. Perspect. Biol. 3, a000638 (2011).

    PubMed  PubMed Central  Google Scholar 

  5. Dundr, M. et al. In vivo kinetics of Cajal body components. J. Cell Biol. 164, 831–842 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Phair, R. D. & Misteli, T. High mobility of proteins in the mammalian cell nucleus. Nature 404, 604–609 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Weidtkamp-Peters, S. et al. Dynamics of component exchange at PML nuclear bodies. J. Cell Sci. 121, 2731–2743 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Platani, M., Goldberg, I., Swedlow, J. R. & Lamond, A. I. In vivo analysis of Cajal body movement, separation, and joining in live human cells. J. Cell Biol. 151, 1561–1574 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shaw, P. J. & Jordan, E. G. The nucleolus. Annu. Rev. Cell Dev. Biol. 11, 93–121 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Fu, L. et al. Nuclear aggresomes form by fusion of PML-associated aggregates. Mol. Biol. Cell 16, 4905–4917 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen, Y.-C. M., Kappel, C., Beaudouin, J., Eils, R. & Spector, D. L. Live cell dynamics of promyelocytic leukemia nuclear bodies upon entry into and exit from mitosis. Mol. Biol. Cell 19, 3147–3162 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dellaire, G., Ching, R. W., Dehghani, H., Ren, Y. & Bazett-Jones, D. P. The number of PML nuclear bodies increases in early S phase by a fission mechanism. J. Cell Sci. 119, 1026–1033 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Brangwynne, C. P., Mitchison, T. J. & Hyman, A. A. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc. Natl Acad. Sci. USA 108, 4334–4339 (2011). Demonstrates that nucleoli, similar to P granules, behave as phase-separated liquids, indicating the generality of the behaviour.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009). Shows that P granules behave as phase-separated liquids, providing a physical mechanism to explain condensate formation.

    Article  CAS  PubMed  Google Scholar 

  15. Saha, S. et al. Polar positioning of phase-separated liquid compartments in cells regulated by an mRNA competition mechanism. Cell 166, 1572–1584 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Patel, A. et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162, 1066–1077 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Altmeyer, M. et al. Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose). Nat. Commun. 6, 8088 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Hyman, A. A. & Brangwynne, C. P. Beyond stereospecificity: liquids and mesoscale organization of cytoplasm. Dev. Cell 21, 14–16 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Hyman, A. A., Weber, C. A. & Jülicher, F. Liquid–liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Li, P. et al. Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336–340 (2012). The assembly of multivalent signalling proteins can promote phase separation, thus providing a molecular mechanism to explain biomolecular condensate formation and a biochemical route to understand the process.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. King, O. D., Gitler, A. D. & Shorter, J. The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res. 1462, 61–80 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Han, T. W. et al. Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell 149, 768–779 (2012). Demonstrates that disordered, low complexity sequences from proteins in RNA granules can form amyloid-like fibres and hydrogels, providing a closely related mechanism to explain biomolecular condensate formation.

    Article  CAS  PubMed  Google Scholar 

  23. Nott, T. J. et al. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol. Cell 57, 936–947 (2015). Disordered, low complexity sequences can phase separate, expanding the range of molecules showing this behaviour.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mitrea, D. M. et al. Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA. eLife 5, 13571 (2016).

    Article  Google Scholar 

  25. Flory, P. J. Principles of Polymer Chemistry (Cornell Univ. Press, 1953).

    Google Scholar 

  26. Banjade, S. & Rosen, M. K. Phase transitions of multivalent proteins can promote clustering of membrane receptors. eLife 3, e04123 (2014). Shows that multivalency-driven phase separation can also explain the clustering of membrane receptors.

    Article  PubMed Central  CAS  Google Scholar 

  27. Su, X. et al. Phase separation of signaling molecules promotes T cell receptor signal transduction. Science 352, 595–599 (2016). Demonstrates that phase separation of multivalent proteins in the T cell receptor signalling pathway drives the formation of signalling clusters in cells; phase separation also promotes actin assembly, protects the signalling molecules from inactivation by phosphatases and probably activates the intracellular MAPK cascade.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fromm, S. A. et al. In vitro reconstitution of a cellular phase-transition process that involves the mRNA decapping machinery. Angew. Chem. Int. Ed. 53, 7354–7359 (2014).

    Article  CAS  Google Scholar 

  29. Zeng, M. et al. Phase transition in postsynaptic densities underlies formation of synaptic complexes and synaptic plasticity. Cell 166, 1163–1175.e12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Banani, S. F. et al. Compositional control of phase-separated cellular bodies. Cell 166, 651–663 (2016). Describes a simple model for controlling biomolecular condensate composition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Foo, C. T. S. W. P., Lee, J. S., Mulyasasmita, W., Parisi-Amon, A. & Heilshorn, S. C. Two-component protein-engineered physical hydrogels for cell encapsulation. Proc. Natl Acad. Sci. USA 106, 22067–22072 (2009).

    Article  CAS  Google Scholar 

  32. Mulyasasmita, W., Lee, J. S. & Heilshorn, S. C. Molecular-level engineering of protein physical hydrogels for predictive sol–gel phase behavior. Biomacromolecules 12, 3406–3411 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brangwynne, C. P., Tompa, P. & Pappu, R. V. Polymer physics of intracellular phase transitions. Nat. Phys. 11, 899–904 (2015).

    Article  CAS  Google Scholar 

  34. Elbaum-Garfinkle, S. et al. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proc. Natl Acad. Sci. USA 112, 7189–7194 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Molliex, A. et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123–133 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Burke, K. A., Janke, A. M., Rhine, C. L. & Fawzi, N. L. Residue-by-residue view of in vitro FUS granules that bind the C-terminal domain of RNA polymerase II. Mol. Cell 60, 231–241 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, H. et al. RNA controls polyQ protein phase transitions. Mol. Cell 60, 220–230 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gilks, N. et al. Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol. Biol. Cell 15, 5383–5398 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Decker, C. J., Teixeira, D. & Parker, R. Edc3p and a glutamine/asparagine-rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae. J. Cell Biol. 179, 437–449 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Reijns, M. A. M., Alexander, R. D., Spiller, M. P. & Beggs, J. D. A role for Q/N-rich aggregation-prone regions in P-body localization. J. Cell Sci. 121, 2463–2472 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Kato, M. et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149, 753–767 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jiang, H. et al. Phase transition of spindle-associated protein regulate spindle apparatus assembly. Cell 163, 108–122 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lin, Y., Protter, D. S. W., Rosen, M. K. & Parker, R. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol. Cell 60, 208–219 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pak, C. W. et al. Sequence determinants of intracellular phase separation by complex coacervation of a disordered protein. Mol. Cell 63, 72–85 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Crick, S. L., Jayaraman, M., Frieden, C., Wetzel, R. & Pappu, R. V. Fluorescence correlation spectroscopy shows that monomeric polyglutamine molecules form collapsed structures in aqueous solutions. Proc. Natl Acad. Sci. USA 103, 16764–16769 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Crick, S. L., Ruff, K. M., Garai, K., Frieden, C. & Pappu, R. V. Unmasking the roles of N and C-terminal flanking sequences from exon 1 of huntingtin as modulators of polyglutamine aggregation. Proc. Natl Acad. Sci. USA 110, 20075–20080 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Das, R. K. & Pappu, R. V. Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues. Proc. Natl Acad. Sci. USA 110, 13392–13397 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kwon, I. et al. Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains. Cell 155, 1049–1060 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xiang, S. et al. The LC domain of hnRNPA2 adopts similar conformations in hydrogel polymers, liquid-like droplets, and nuclei. Cell 163, 829–839 (2015). References 16, 35, 43 and 49 demonstrate that initial phase separation of disordered proteins is followed over time by maturation or hardening into fibrous solids, uniting phase separation and fibre formation mechanisms of biomolecular condensate formation under a common framework.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Buchan, J. R., Kolaitis, R.-M., Taylor, J. P. & Parker, R. Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 153, 1461–1474 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Conicella, A. E., Zerze, G.H., Mittal, J. & Fawzi, N. L. ALS mutations disrupt phase separation mediated by α-helical structure in the TDP-43 low-complexity C-terminal domain. Structure 24, 1537–1549 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jain, S. et al. ATPase-modulated stress granules contain a diverse proteome and substructure. Cell 164, 487–498 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Quiroz, F. G. & Chilkoti, A. Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers. Nat. Mater. 14, 1164–1171 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Weber, S. C. & Brangwynne, C. P. Inverse size scaling of the nucleolus by a concentration-dependent phase transition. Curr. Biol. 25, 641–646 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shevtsov, S. P. & Dundr, M. Nucleation of nuclear bodies by RNA. Nat. Cell Biol. 13, 167–173 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Kaiser, T. E., Intine, R. V. & Dundr, M. De novo formation of a subnuclear body. Science 322, 1713–1717 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Mao, Y. S., Sunwoo, H., Zhang, B. & Spector, D. L. Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs. Nat. Cell Biol. 13, 95–101 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Chung, I., Leonhardt, H. & Rippe, K. De novo assembly of a PML nuclear subcompartment occurs through multiple pathways and induces telomere elongation. J. Cell Sci. 124, 3603–3618 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Berry, J., Weber, S. C., Vaidya, N., Haataja, M. & Brangwynne, C. P. RNA transcription modulates phase transition-driven nuclear body assembly. Proc. Natl Acad. Sci. USA 112, E5237–E5245 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hancock, R. A role for macromolecular crowding effects in the assembly and function of compartments in the nucleus. J. Struct. Biol. 146, 281–290 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Dellaire, G., Eskiw, C., Dehghani, H., Ching, R. & Bazett-Jones, D. Mitotic accumulations of PML protein contribute to the re-establishment of PML nuclear bodies in G1. J. Cell Sci. 119, 1034–1042 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Saha, S. et al. Polar positioning of phase-separated liquid compartments in cells regulated by an mRNA competition mechanism. Cell 166, 1572–1584.e16 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Grousl, T. et al. Robust heat shock induces eIF2α-phosphorylation-independent assembly of stress granules containing eIF3 and 40S ribosomal subunits in budding yeast, Saccharomyces cerevisiae. J. Cell Sci. 122, 2078–2088 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Buchan, J. R. & Parker, R. Eukaryotic stress granules: the ins and outs of translation. Mol. Cell 36, 932–941 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hoyle, N. P., Castelli, L. M., Campbell, S. G., Holmes, L. E. A. & Ashe, M. P. Stress-dependent relocalization of translationally primed mRNPs to cytoplasmic granules that are kinetically and spatially distinct from P-bodies. J. Cell Biol. 179, 65–74 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Louria-Hayon, I. et al. The promyelocytic leukemia protein protects p53 from Mdm2-mediated inhibition and degradation. J. Biol. Chem. 278, 33134–33141 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Ishov, A. M. et al. PML is critical for ND10 formation and recruits the PML-interacting protein Daxx to this nuclear structure when modified by SUMO-1. J. Cell Biol. 147, 221–234 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hamill, D. R., Severson, A. F., Carter, J. C. & Bowerman, B. Centrosome maturation and mitotic spindle assembly in C. elegans require SPD-5, a protein with multiple coiled-coil domains. Dev. Cell 3, 673–684 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Kedersha, N. L., Gupta, M., Li, W., Miller, I. & Anderson, P. RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2α to the assembly of mammalian stress granules. J. Cell Biol. 147, 1431–1442 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kroschwald, S. et al. Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules. eLife 4, e06807 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Feric, M. et al. Coexisting liquid phases underlie nucleolar subcompartments. Cell 165, 1686–1697 (2016). Demonstrates the reconstitution of multilayered phase-separated liquid structures from simple mixtures of recombinant proteins, showing that such complexity can be achieved in a simple fashion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Boke, E. et al. Amyloid-like self-assembly of a cellular compartment. Cell 166, 637–650 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fändrich, M., Fletcher, M. A. & Dobson, C. M. Amyloid fibrils from muscle myoglobin. Nature 410, 165–166 (2001).

    Article  PubMed  Google Scholar 

  74. Vitalis, A., Wang, X. & Pappu, R. V. Quantitative characterization of intrinsic disorder in polyglutamine: insights from analysis based on polymer theories. Biophys. J. 93, 1923–1937 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Halfmann, R. A glass menagerie of low complexity sequences. Curr. Opin. Struc Biol. 38, 9–16 (2016).

    Article  CAS  Google Scholar 

  76. Watanabe, H. Viscoelasticity and dynamics of entangled polymers. Prog. Polym. Sci. 24, 1253–1403 (1999).

    Article  CAS  Google Scholar 

  77. Ramaswami, M., Taylor, J. P. & Parker, R. Altered ribostasis: RNA–protein granules in degenerative disorders. Cell 154, 727–736 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Li, Y. R., King, O. D., Shorter, J. & Gitler, A. D. Stress granules as crucibles of ALS pathogenesis. J. Cell Biol. 201, 361–372 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Weber, S. C. & Brangwynne, C. P. Getting RNA and protein in phase. Cell 149, 1188–1191 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Wolozin, B. Physiological protein aggregation run amuck: stress granules and the genesis of neurodegenerative disease. Discov. Med. 17, 47–52 (2014).

    PubMed  PubMed Central  Google Scholar 

  81. Aguzzi, A. & Altmeyer, M. Phase separation: linking cellular compartmentalization to disease. Trends Cell Biol. 26, 547–558 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. Alberti, S. & Hyman, A. A. Are aberrant phase transitions a driver of cellular aging? BioEssays 38, 959–968 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Oakes, C. C., La Salle, S., Smiraglia, D. J., Robaire, B. & Trasler, J. M. A unique configuration of genome-wide DNA methylation patterns in the testis. Proc. Natl Acad. Sci. USA 104, 228–233 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Feric, M. & Brangwynne, C. P. A nuclear F-actin scaffold stabilizes ribonucleoprotein droplets against gravity in large cells. Nat. Cell Biol. 15, 1253–1259 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kaizuka, Y., Douglass, A. D., Varma, R., Dustin, M. L. & Vale, R. D. Mechanisms for segregating T cell receptor and adhesion molecules during immunological synapse formation in Jurkat T cells. Proc. Natl Acad. Sci. USA 104, 20296–20301 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yi, J., Wu, X. S., Crites, T. & Hammer, J. A. Actin retrograde flow and actomyosin II arc contraction drive receptor cluster dynamics at the immunological synapse in Jurkat T cells. Mol. Biol. Cell 23, 834–852 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lee, C. F., Brangwynne, C. P., Gharakhani, J., Hyman, A. A. & Jülicher, F. Spatial organization of the cell cytoplasm by position-dependent phase separation. Phys. Rev. Lett. 111, 088101 (2013).

    Article  PubMed  CAS  Google Scholar 

  88. Zwicker, D., Hyman, A. A. & Jülicher, F. Suppression of Ostwald ripening in active emulsions. Phys. Rev. E 92, 012317 (2015).

    Article  CAS  Google Scholar 

  89. Hagan, M. F. & Baskaran, A. Emergent self-organization in active materials. Curr. Opin. Cell Biol. 38, 74–80 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Popkin, G. The physics of life. Nature 529, 16–18 (2016).

    Article  CAS  PubMed  Google Scholar 

  91. Sanchez, T., Chen, D. T. N., DeCamp, S. J., Heymann, M. & Dogic, Z. Spontaneous motion in hierarchically assembled active matter. Nature 491, 431–434 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang, J. T. et al. Regulation of RNA granule dynamics by phosphorylation of serine-rich, intrinsically disordered proteins in C. elegans. eLife 3, e04591 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Lang, M. et al. Three-dimensional organization of promyelocytic leukemia nuclear bodies. J. Cell Sci. 123, 392–400 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Boisvert, F.-M., van Koningsbruggen, S., Navascués, J. & Lamond, A. I. The multifunctional nucleolus. Nat. Rev. Mol. Cell Biol. 8, 574–585 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Monneron, A. & Bernhard, W. Fine structural organization of the interphase nucleus in some mammalian cells. J. Ultrastruct. Res. 27, 266–288 (1969).

    Article  CAS  PubMed  Google Scholar 

  96. Hyman, A. A. & Simons, K. Cell biology. Beyond oil and water — phase transitions in cells. Science 337, 1047–1049 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Tatomer, D. C. et al. Concentrating pre-mRNA processing factors in the histone locus body facilitates efficient histone mRNA biogenesis. J. Cell Biol. 213, 557–570 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Strzelecka, M. et al. Coilin-dependent snRNP assembly is essential for zebrafish embryogenesis. Nat. Struct. Mol. Biol. 17, 403–409 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Novotny, I., Blazikova, M., Stanek, D., Herman, P. & Malinsky, J. In vivo kinetics of U4/U6·U5 tri-snRNP formation in Cajal bodies. Mol. Biol. Cell 22, 513–523 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Strulson, C. A., Molden, R. C., Keating, C. D. & Bevilacqua, P. C. RNA catalysis through compartmentalization. Nat. Chem. 4, 941–946 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Deryusheva, S. & Gall, J. G. Small Cajal body-specific RNAs of Drosophila function in the absence of Cajal bodies. Mol. Biol. Cell 20, 5250–5259 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Davis, B. W. et al. Colocalization and sequential enzyme activity in aqueous biphasic systems: experiments and modeling. Biophys. J. 109, 2182–2194 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kuznetsova, I. M., Zaslavsky, B. Y., Breydo, L., Turoverov, K. K. & Uversky, V. N. Beyond the excluded volume effects: mechanistic complexity of the crowded milieu. Molecules 20, 1377–1409 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Cai, L.-H., Panyukov, S. & Rubinstein, M. Mobility of nonsticky nanoparticles in polymer liquids. Macromolecules 44, 7853–7863 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Elbaum-Garfinkle, S. & Brangwynne, C. P. Liquids, fibers, and gels: the many phases of neurodegeneration. Dev. Cell 35, 531–532 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Good, M. C., Zalatan, J. G. & Lim, W. A. Scaffold proteins: hubs for controlling the flow of cellular information. Science 332, 680–686 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Castellana, M. et al. Enzyme clustering accelerates processing of intermediates through metabolic channeling. Nat. Biotechnol. 32, 1011–1018 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. O'Connell, J. D., Zhao, A., Ellington, A. D. & Marcotte, E. M. Dynamic reorganization of metabolic enzymes into intracellular bodies. Annu. Rev. Cell Dev. Biol. 28, 89–111 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Noree, C., Monfort, E., Shiau, A. K. & Wilhelm, J. E. Common regulatory control of CTP synthase enzyme activity and filament formation. Mol. Biol. Cell 25, 2282–2290 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Li, H. et al. Sequestration and inhibition of Daxx-mediated transcriptional repression by PML. Mol. Cell. Biol. 20, 1784–1796 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Eldar, A. & Elowitz, M. B. Functional roles for noise in genetic circuits. Nature 467, 167–173 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kshirsagar, M. & Parker, R. Identification of Edc3p as an enhancer of mRNA decapping in Saccharomyces cerevisiae. Genetics 166, 729–739 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dunckley, T. & Parker, R. The DCP2 protein is required for mRNA decapping in Saccharomyces cerevisiae and contains a functional MutT motif. EMBO J. 18, 5411–5422 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bernardi, R. & Pandolfi, P. P. Role of PML and the PML-nuclear body in the control of programmed cell death. Oncogene 22, 9048–9057 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Nakagawa, S., Naganuma, T., Shioi, G. & Hirose, T. Paraspeckles are subpopulation-specific nuclear bodies that are not essential in mice. J. Cell Biol. 193, 31–39 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Dill, K. A. & Bromberg, S. Molecular Driving Forces. (Garland Science, 2011).

    Google Scholar 

  117. Flory, P. J. Thermodynamics of high polymer solutions. J. Chem. Phys. 10, 51 (1942).

    Article  CAS  Google Scholar 

  118. Griffin, E. E., Odde, D. J. & Seydoux, G. Regulation of the MEX-5 gradient by a spatially segregated kinase/phosphatase cycle. Cell 146, 955–968 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Stockmayer, W. Molecular distribution in condensation polymers. J. Polymer Sci. 9, 69–71 (1952).

    Article  CAS  Google Scholar 

  120. Cohen, R. & Benedek, G. Equilibrium and kinetic theory of polymerization and the sol–gel transition. J. Phys. Chem. 86, 3696–3714 (1982).

    Article  CAS  Google Scholar 

  121. Huggins, M. L. Solutions of long chain compounds. J. Chem. Phys. 9, 440 (1941).

    Article  CAS  Google Scholar 

  122. Semenov, A. & Rubinstein, M. Thermoreversible gelation in solutions of associative polymers. 1. Statics. Macromolecules 31, 1373–1385 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank R. Duronio and C. Weber for discussion and critical comments on the Review. Research on multivalency-driven phase separation is supported in the Hyman laboratory by the Max Planck Society, and in the Rosen laboratory by the Howard Hughes Medical Institute, the Welch Foundation (I-1544) and a Sara and Frank McKnight Graduate Fellowship (to S.F.B.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anthony A. Hyman or Michael K. Rosen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Dripping of P granules.

Movie shows syncytial germ cell nuclei covered in P granules in the germ line of a GFP::PGL-1 worm. The germ line has been dissected and squashed. P granules appear to drip off of the nuclei, fuse, and round up. From Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009). Reprinted with permission from AAAS. (MOV 259 kb)

Dynamics of FUS bodies.

Timelapse imaging of stress granules in a live HeLa cell expressing FUS-GFP using high-resolution lightsheet microscopy. Movie courtesy of H. O. Lee and M. Weigert, MPI-CBG, Dresden, Germany. (MOV 28339 kb)

Fusion of stress granules.

Expanded and rendered movie of the same cell in Supplemental movie 2, showing fusion of two stress granules visualized through FUS-GFP. Movie courtesy of H. O. Lee and M. Weigert, MPI-CBG, Dresden, Germany. (AVI 60 kb)

Formation and merging of pNephrin clusters.

Alexa 488-labeled His8-pNephrin was attached to a DOPC supported lipid bilayer doped (1%) with Ni2+-NTA lipids, and Nck and N-WASP were added. Movie shows TIRF images acquired every minute. Initial clusters are small and numerous, but merge over time to make larger structures. Reproduced from Banjade, S. & Rosen, M. K. Phase transitions of multivalent proteins can promote clustering of membrane receptors. eLife 3, e04123 (2014). (AVI 553 kb)

Supplementary information S5 (box)

How are condensed phases different from macromolecular complexes? (PDF 147 kb)

Supplementary information S6 (table)

Various biomolecular condensates and their functions (PDF 156 kb)

PowerPoint slides

Glossary

Cajal bodies

Biomolecular condensates in eukaryotic nuclei containing coilin and survival motor neuron protein (SMN) as well as many factors involved in mRNA splicing. Cajal bodies are thought to have a role in assembling spliceosomal small nuclear ribonucleoproteins.

PML nuclear bodies

Biomolecular condensates in eukaryotic nuclei containing promyelocytic leukaemia (PML), death domain-associated protein (DAXX) and Sp100. PML nuclear bodies are thought to have a role in apoptotic signalling, antiviral defence and transcriptional regulation.

Entropy

A measure of disorder in a given system. Specifically, the number of microstates possible for a given state. Systems tend to approach states that maximize their entropy.

Free energy

The energy available in a thermodynamic system to work. Systems tend to approach states that minimize their free energy.

Stereospecificity

A property of binding reactions whereby the specificity is largely dictated by the complementary geometries of the ligand and receptor molecules.

WW domains

Small (5 kDa) modular signalling domains found in numerous proteins that contain two conserved tryptophan residues. WW domains bind to proline-containing peptide motifs.

Cation–pi interactions

Noncovalent interactions between positively charged residues (for example, lysine) and pi electrons in aromatic residues (for example, phenylalanine).

Pi-stacking interactions

Attractive interactions between aromatic rings, such as those found in phenylalanine, tyrosine and tryptophan residues.

Dipolar interactions

Interactions between two molecules that are electrically polarized, wherein the partial positive charge on one interacts with the partial negative charge on the other.

Chemical footprinting

Use of a small reactive chemical to modify solvent-exposed sites in a macromolecule, providing information on the structure of that macromolecule.

Chemical potential

The partial molar free energy within a system. Mathematically, the first derivative of free energy with respect to composition. Systems tend to approach states that dissipate gradients in chemical potential.

Histone locus bodies

Biomolecular condensates in eukaryotic nuclei containing nuclear protein, ataxia-telangiectasia locus (NPAT) and FLICE-associated huge protein (FLASH), and thought to be involved in the processing of histone mRNAs.

Nuage

Biomolecular condensates in metazoan germ cells thought to have a role in maintaining germ cell genomic integrity. This class of compartments includes P granules, polar granules and mammalian nuages.

Paraspeckles

Biomolecular condensates in the mammalian nucleus that contain the long non-coding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) and a variety of RNA-binding and other proteins. The functions of paraspeckles are not well understood, but include storage of certain RNAs.

Balbiani bodies

A transient collection of proteins, RNA and membrane-bound organelles (endoplasmic reticulum, Golgi and mitochondria) found in primary oocytes of all animals observed to date (flies, frogs, mice and humans).

Small nuclear ribonucleoprotein

A RNA–protein complex that is the primary constituent of spliceosomes, the eukaryotic splicing machinery.

Hammerhead ribozyme

A catalytic RNA molecule involved in RNA cleavage found in organisms ranging from bacteria to mammals.

Partition coefficients

Measures the enrichment of chemical species into the condensed phase of a two-phase system. Mathematically, the partition coefficient is defined as the ratio of concentration of the species in the condensed phase to that in the dilute phase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banani, S., Lee, H., Hyman, A. et al. Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol 18, 285–298 (2017). https://doi.org/10.1038/nrm.2017.7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2017.7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing