Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

A worm's eye view of the immune system: consequences for evolution of human autoimmune disease

Abstract

Humans and the many parasites that we can host have co-evolved over millions of years. This has been compared to an arms race in which the immune armoury of the human has evolved to deal with potential pathogens and the pathogen has evolved strategies to evade, and in some cases use, the immune system of the human host. Recently, there have been marked changes in the exposure of individuals in the developed world to both microorganisms and metazoan parasites, so the immune stimuli such organisms provide no longer have a role in our lives. As we discuss here, this is a marked perturbation, and the absence of the associated immunomodulation might have led to the increased emergence of autoimmune diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schistosoma mansoni life cycle.
Figure 2: Induction of T-helper-1- and T-helper-2-cell responses and development of regulatory T cells after infection with Schistosoma mansoni.
Figure 3: Mechanisms by which helminths could impact on autoimmunity and allergy.

Similar content being viewed by others

References

  1. Aaltonen, J. & Bjorses, P. Cloning of the APECED gene provides new insight into human autoimmunity. Ann. Med. 31, 111–116 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Hyttinen, V., Kaprio, J., Kinnunen, L., Koskenvuo, M. & Tuomilehto, J. Genetic liability of type 1 diabetes and the onset age among 22,650 young Finnish twin pairs: a nationwide follow-up study. Diabetes 52, 1052–1055 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Banting, F. G. & Best, C. H. The internal secretion of the pancreas. J. Lab. Clin. Med. 7, 465–480 (1922).

    Google Scholar 

  4. Strachan, D. P. Hay fever, hygiene, and household size. BMJ 299, 1259–1260 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jaeckel, E., Manns, M. & von Herrath, M. Viruses and diabetes. Ann. NY Acad. Sci. 958, 7–25 (2002).

    Article  PubMed  Google Scholar 

  6. Goncalves, M. L., Araujo, A. & Ferreira, L. F. Human intestinal parasites in the past: new findings and a review. Mem. Inst. Oswaldo Cruz 98, 103–118 (2003).

    Article  PubMed  Google Scholar 

  7. Basch, P. F. Schistosomes: Development, Reproduction, and Host Relations (Oxford Univ. Press, New York, 1991).

    Google Scholar 

  8. Woolhouse, M. E. J., Webster, J. P., Domingo, E., Charlesworth, E. B. & Levin, B. R. Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nature Genet. 32, 569–577 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Pearce, E. J. & MacDonald, A. S. The immunobiology of schistosomiasis. Nature Rev. Immunol. 2, 499–511 (2002).

    Article  CAS  Google Scholar 

  10. Sturrock, R. F. in Human Schistosomiasis (eds Jordan, P., Webbe, G. & Sturrock, R. F.) 1–32 (CAB International, Wallingford, 1993).

    Google Scholar 

  11. Webster, J. P. & Woolhouse, M. E. J. Heritability and strain specificity in compatibility between snail intermediate hosts and their parasitic schistosomes. Evolution 52, 1627–1634 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Dissous, C., Torpier, G., Duvaux-Miret, O. & Capron, A. Structural homology of tropomyosins from the human trematode Schistosoma mansoni and its intermediate host Biomphalaria glabrata. Mol. Biochem. Parasitol. 43, 245–255 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Duvaux-Miret, D., Stefano, G. B., Smith, E. M., Mallozzi, L. A. & Capron A. Proopiomelanocortin-derived peptides as tools of immune evasion for the human trematode Schistosoma mansoni. Acta Biol. Hung. 43, 281–286 (1992).

    CAS  PubMed  Google Scholar 

  14. Chabasse, D., Bertrand, G., Leroux, J. P., Gauthey, N. & Hocquet, P. Developmental bilharziasis caused by Schistosoma mansoni discovered 37 years after infestation. Bull. Soc. Pathol. Exot. Filiales 78, 643–647 (1985) (in French).

    CAS  PubMed  Google Scholar 

  15. Pearce, E. J. & Sher, A. Mechanisms of immune evasion in schistosomiasis. Contrib. Microbiol. Immunol. 8, 219–232 (1987).

    CAS  PubMed  Google Scholar 

  16. Damian, R. T. Molecular mimicry: parasite evasion and host defense. Curr. Top. Microbiol. Immunol. 145, 101–115 (1989).

    CAS  PubMed  Google Scholar 

  17. Maizels, R. M., Bundy, D. A., Selkirk, M. E., Smith, D. F. & Anderson, R. M. Immunological modulation and evasion by helminth parasites in human populations. Nature 365, 797–805 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Carvalho-Queiroz, C. et al. Cross-reactivity of Schistosoma mansoni cytosolic superoxide dismutase, a protective vaccine candidate, with host superoxide dismutase and identification of parasite-specific B epitopes. Infect. Immun. 72, 2635–2647 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Doenhoff, M. J. A role for granulomatous inflammation in the transmission of infectious disease: schistosomiasis and tuberculosis. Parasitology 115, S113–S125 (1977).

    Article  Google Scholar 

  20. Fallon, P. G. & Dunne, D. W. Tolerization of mice to Schistosoma mansoni egg antigens causes elevated type 1 and diminished type 2 cytokine responses and increased mortality in acute infection. J. Immunol. 162, 4122–4132 (1999).

    CAS  PubMed  Google Scholar 

  21. Karanja, D. M., Colley, D. G., Nahlen, B. L., Ouma, J. H. & Secor, W. E. Studies on schistosomiasis in western Kenya: I. Evidence for immune-facilitated excretion of schistosome eggs from patients with Schistosoma mansoni and human immunodeficiency virus coinfections. Am. J. Trop. Med. Hyg. 56, 515–521 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Amiri, P. et al. Tumour necrosis factor α restores granulomas and induces parasite egg-laying in schistosome-infected SCID mice. Nature 356, 565–566 (1992).

    Article  Google Scholar 

  23. Beall, M. J. & Pearce, E. J. Human transforming growth factor-β activates a receptor serine/threonine kinase from the intravascular parasite Schistosoma mansoni. J. Biol. Chem. 276, 31613–31619 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Davies, S. J., Shoemaker, C. B. & Pearce, E. J. A divergent member of the transforming growth factor receptor family from Schistosoma mansoni is expressed on the parasite surface membrane. J. Biol. Chem. 273, 11234–11240 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Verjovski-Almeida, S. et al. Transcriptome analysis of the acoelomate human parasite Schistosoma mansoni. Nature Genet. 35, 148–157 (2003).

    Article  PubMed  Google Scholar 

  26. Hu, W. et al. Evolutionary and biomedical implications of a Schistosoma japonicum complementary DNA resource. Nature Genet. 35, 139–147 (2003).

    Article  PubMed  Google Scholar 

  27. Grzych, J. M. et al. Egg deposition is the major stimulus for the production of TH2 cytokines in murine schistosomiasis mansoni. J. Immunol. 146, 1322–1327 (1991).

    CAS  PubMed  Google Scholar 

  28. Grogan, J. L., Kremsner, P. G., Deelder, A. M. & Yazdanbakhsh, M. Antigen-specific proliferation and interferon-γ and interleukin-5 production are down-regulated during Schistosoma haematobium infection. J. Infect. Dis. 177, 1433–1437 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Grogan, J. L., Kremsner, P. G., Deelder, A. M. & Yazdanbakhsh, M. The effect of anti-IL-10 on proliferation and cytokine production in human schistosomiasis: fresh versus cryopreserved cells. Parasite Immunol. 20, 345–349 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Angeli, V. et al. Role of the parasite-derived prostaglandin D2 in the inhibition of epidermal Langerhans cell migration during schistosomiasis infection. J. Exp. Med. 193, 1135–1147 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Herve, M. et al. Pivotal roles of the parasite PGD2 synthase and of the host D prostanoid receptor 1 in schistosome immune evasion. Eur. J. Immunol. 33, 2764–2772 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Zaccone, P. et al. Schistosoma mansoni antigens modulate the activity of the innate immune response and prevent onset of type 1 diabetes. Eur. J. Immunol. 33, 1439–1449 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. MacDonald, A. S., Straw, A. D., Bauman, B. & Pearce, E. J. CD8 dendritic cell activation status plays an integral role in influencing TH2 response development. J. Immunol. 167, 1982–1988 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Kullberg, M. C., Pearce, E. J., Hieny, S. E., Sher, A. & Berzofsky, J. A. Infection with Schistosoma mansoni alters TH1/TH2 cytokine responses to a non-parasite antigen. J. Immunol. 148, 3264–3270 (1992).

    CAS  PubMed  Google Scholar 

  35. Thomas, P. G. et al. Maturation of dendritic cell 2 phenotype by a helminth glycan uses a Toll-like receptor 4-dependent mechanism. J. Immunol. 171, 5837–5841 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Okano, M., Satoskar, A. R., Nishizaki, K. & Harn, D. A. Lacto-N-fucopentaose III found on Schistosoma mansoni egg antigens functions as adjuvant for proteins by inducing TH2-type response. J. Immunol. 167, 442–450 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. van Die, I. et al. The dendritic cell-specific C-type lectin DC-SIGN is a receptor for Schistosoma mansoni egg antigens and recognizes the glycan antigen Lewis X. Glycobiology 13, 471–478 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Faveeuw, C. et al. Schistosome N-glycans containing core α3-fucose and core β2-xylose epitopes are strong inducers of TH2 responses in mice. Eur. J. Immunol. 33, 1271–1281 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Kane, C. M. et al. Helminth antigens modulate TLR-initiated dendritic cell activation. J. Immunol. 173, 7454–7461 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Schramm, G. et al. Molecular characterization of an interleukin-4-inducing factor from Schistosoma mansoni eggs. J. Biol. Chem. 278, 18384–18392 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Sabin, E. A., Kopf, M. A. & Pearce, E. J. Schistosoma mansoni egg-induced early IL-4 production is dependent upon IL-5 and eosinophils. J. Exp. Med. 184, 1871–1878 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Brown, D. R. et al. β2-Microglobulin-dependent NK1.1+ T cells are not essential for T helper cell 2 immune responses. J. Exp. Med. 184, 1295–1304 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Herbert, D. R. et al. Alternative macrophage activation is essential for survival during schistosomiasis and downmodulates T helper 1 responses and immunopathology. Immunity 20, 623–635 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Sher, A., Fiorentino, D., Caspar, P., Pearce, E. & Mosmann, T. Production of IL-10 by CD4+ T lymphocytes correlates with down-regulation of TH1 cytokine synthesis in helminth infection. J. Immunol. 147, 2713–2716 (1991).

    CAS  PubMed  Google Scholar 

  45. Palanivel, V. et al. B-cell outgrowth and ligand-specific production of IL-10 correlate with TH2 dominance in certain parasitic diseases. Exp. Parasitol. 84, 168–177 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Hesse, M. et al. The pathogenesis of schistosomiasis is controlled by cooperating IL-10-producing innate effector and regulatory T cells. J. Immunol. 172, 3157–3166 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Mangan, N. E. et al. Helminth infection protects mice from anaphylaxis via IL-10-producing B cells. J. Immunol. 173, 6346–6356 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. van der Kleij, D. et al. A novel host–parasite lipid cross-talk. Schistosomal lyso-phosphatidylserine activates Toll-like receptor 2 and affects immune polarization. J. Biol. Chem. 277, 48122–48129 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. McKee, A. S. & Pearce, E. J. CD25+CD4+ cells contribute to TH2 polarization during helminth infection by suppressing TH1 response development. J. Immunol. 173, 1224–1231 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. van den Biggelaar, A. H. et al. Decreased atopy in children infected with Schistosoma haematobium: a role for parasite-induced interleukin-10. Lancet 356, 1723–1727 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Araujo, M. I. et al. Impaired T helper 2 response to aeroallergen in helminth-infected patients with asthma. J. Infect. Dis. 190, 1797–1803 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Redpath, S., Ghazal, P. & Gascoigne, N. R. Hijacking and exploitation of IL-10 by intracellular pathogens. Trends Microbiol. 9, 86–92 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Mahot, S., Sergeant, A., Drouet, E. & Gruffat, H. A novel function for the Epstein–Barr virus transcription factor EB1/Zta: induction of transcription of the hIL-10 gene. J. Gen. Virol. 84, 965–974 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Peacock, J. W. & Bost, K. L. Murine γ-herpesvirus-68-induced interleukin-10 increases viral burden, but limits virus-induced splenomegaly and leukocytosis. Immunology 104, 109–117 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Godfrey, D. I. & Kronenberg, M. Going both ways: immune regulation via CD1d-dependent NKT cells. J. Clin. Invest. 114, 1379–1388 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pryor, S. C. & Elizee, R. Evidence of opiates and opioid neuropeptides and their immune effects in parasitic invertebrates representing three different phyla: Schistosoma mansoni, Theromyzon tessulatum, Trichinella spiralis. Acta Biol. Hung. 51, 331–341 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Theus, S. A., Cave, M. D. & Eisenach, K. D. Intracellular macrophage growth rates and cytokine profiles of Mycobacterium tuberculosis strains with different transmission dynamics. J. Infect. Dis. 191, 453–460 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Koppel, E. A. et al. Identification of the mycobacterial carbohydrate structure that binds the C-type lectins DC-SIGN, L-SIGN and SIGNR1. Immunobiology 209, 117–127 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Van Valen, L. A new evolutionary law. Evol. Theory 1, 1–30 (1973).

    Google Scholar 

  60. Thomas, F., Poulin, R., Guegan, J. -F., Michalakis, Y. & Renaud, F. Are there pros as well as cons to being parasitized? Parasitol. Today 16, 533–536 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Maizels, R. M. & Yazdenbakhsh, M. Immune regulation by helminth parasites: cellular and molecular mechanisms. Nature Rev. Immunol. 3, 733–744 (2003).

    Article  CAS  Google Scholar 

  62. Cooke, A., Zaccone, P., Raine, T., Phillips, J. M. & Dunne, D. W. Infection andautoimmunity: are we winning the war, only to lose the peace? Trends Parasitol. 20, 316–321 (2004).

    Article  PubMed  Google Scholar 

  63. Wilson, M. S. & Maizels, R. M. Regulation of allergy and autoimmunity in helminth infection. Clin. Rev. Allergy Immunol. 26, 35–50 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Elliott, D. E., Summers, R. W. & Weinstock, J. V. Helminths and the modulation of mucosal inflammation. Curr. Opin. Gastroenterol. 21, 51–58 (2005).

    PubMed  Google Scholar 

  65. Summers, R. W. et al. Trichuris suis seems to be safe and possibly effective in the treatment of inflammatory bowel disease. Am. J. Gastroenterol. 98, 2034–2041 (2003).

    Article  PubMed  Google Scholar 

  66. Summers, R. W., Elliott, D. E., Urban, J. F., Thompson, R. & Weinstock, J. V. Trichuris suis therapy in Crohn's disease. Gut 54, 87–90 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cooke, A. et al. Infection with Schistosoma mansoni prevents insulin dependent diabetes mellitus in non-obese diabetic mice. Parasite Immunol. 21, 169–176 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. La Flamme, A. C., Ruddenklau, K. & Backstrom, B. T. Schistosomiasis decreases central nervous system inflammation and alters the progression of experimental autoimmune encephalomyelitis. Infect. Immun. 71, 4996–5004 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nagayama, Y., Watanabe, K., Niwa, M., McLachlan, S. M. & Rapoport, B. Schistosoma mansoni and α-galactosylceramide: prophylactic effect of TH1 immune suppression in a mouse model of Graves' hyperthyroidism. J. Immunol. 173, 2167–2173 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Sewell, D. et al. Immunomodulation of experimental autoimmune encephalomyelitis by helminth ova immunization. Int. Immunol. 15, 59–69 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. El-Wakil, H. S. et al. Effect of Schistosoma mansoni egg deposition on multiple low doses streptozotocin induced insulin dependent diabetes. J. Egypt Soc. Parasitol. 32, 987–1002 (2002).

    PubMed  Google Scholar 

  72. Elliott, D. E. et al. Exposure to schistosome eggs protects mice from TNBS-induced colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 284, G385–G391 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Mattsson, L., Larsson, P., Erlandsson-Harris, H., Klareskog, L. & Harris, R. A. Parasite-mediated down-regulation of collagen-induced arthritis (CIA) in DA rats. Clin. Exp. Immunol. 122, 477–483 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Baxter, A. G. et al. Mycobacteria precipitate an SLE-like syndrome in diabetes-prone NOD mice. Immunology 83, 227–231 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Sewell, D. L. et al. Infection with Mycobacterium bovis BCG diverts traffic of myelin oligodendroglial glycoprotein autoantigen-specific T cells away from the central nervous system and ameliorates experimental autoimmune encephalomyelitis. Clin. Diagn. Lab. Immunol. 10, 564–572 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Bras, A. & Aguas, A. P. Diabetes-prone NOD mice are resistant to Mycobacterium avium and the infection prevents autoimmune disease. Immunology 89, 20–25 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Costalonga, M., Hodges, J. S. & Herzberg, M. C. Streptococcus sanguis modulates type II collagen-induced arthritis in DBA/1J mice. J. Immunol. 169, 2189–2195 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Lehmann, D. & Ben-Nun, A. Bacterial agents protect against autoimmune disease. I. Mice pre-exposed to Bordetella pertussis or Mycobacterium tuberculosis are highly refractory to induction of experimental autoimmune encephalomyelitis. J. Autoimmun. 5, 675–690 (1992).

    Article  CAS  PubMed  Google Scholar 

  79. McInnes, I. B. et al. A novel therapeutic approach targeting articular inflammation using the filarial nematode-derived phosphorylcholine-containing glycoprotein ES-62. J. Immunol. 171, 2127–2133 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Elliott, D. E. et al. Heligmosomoides polygyrus inhibits established colitis in IL-10-deficient mice. Eur. J. Immunol. 34, 2690–2698 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Khan, W. I. et al. Intestinal nematode infection ameliorates experimental colitis in mice. Infect. Immun. 70, 5931–5937 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Reardon, C., Sanchez, A., Hogaboam, C. M. & McKay, D. M. Tapeworm infection reduces epithelial ion transport abnormalities in murine dextran sulfate sodium-induced colitis. Infect. Immun. 69, 4417–4423 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to the Wellcome Trust (United Kingdom) and Diabetes UK, who have supported our research into the ability of infections to modulate autoimmunity. We thank J. Connor, P. Zaccone, H. Cronin, J. Cooke, S. Efstathiou and T. Raine for discussions and for help in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Cooke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

IFN-γ

IL-4

IL-10

IL-12

TGF-β

TNF

Infectious Disease Information

schistosomiasis

OMIM

Graves' disease

inflammatory bowel disease

multiple sclerosis

systemic lupus erythematosus

type 1 diabetes

FURTHER INFORMATION

David Dunne's homepage

Anne Cooke's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunne, D., Cooke, A. A worm's eye view of the immune system: consequences for evolution of human autoimmune disease. Nat Rev Immunol 5, 420–426 (2005). https://doi.org/10.1038/nri1601

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1601

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing