Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Organogenesis

Pancreatic organogenesis — developmental mechanisms and implications for therapy

Key Points

  • The pancreas is a complex organ that consists of two parts: exocrine, which secretes digestive enzymes into the gut; and endocrine, which secretes the four hormones insulin, glucagon, somatostatin and pancreatic polypeptide.

  • Early studies showed that initial stages of pancreatic development depend on epithelio-mesenchymal interactions, and members of the fibroblast growth factor and epidermal growth factor families of signalling factors were subsequently shown to be part of the signal from the mesenchyme.

  • Mesenchyme has a permissive rather than an instructive role in pancreatic induction.

  • Due to its proximity to the dorsal endoderm, the notochord has been the prime candidate for directing pancreatic development. Although initial in vitro experiments confirmed this prediction, according to more recent studies, the notochord's role is only permissive.

  • Pancreatic growth and differentiation is also affected by Notch signalling — it controls the choice between differentiated endocrine and progenitor cells.

  • Because of neuronal-marker expression, pancreatic endocrine cells were originally proposed to be of neuronal origin. It has now been unequivocally established that they arise from the endoderm.

  • An important note of caution emerges from these studies — a great deal of care is required when cell populations are characterized on the basis of expression markers. Efforts to identify pancreatic stem cells with the aim to treat diabetic patients using cell-replacement therapy might be hampered by the erroneous choice of markers to define pancreatic stem-cell populations.

Abstract

The pancreas is a mixed exocrine and endocrine gland that controls many homeostatic functions. The exocrine pancreas produces and secretes digestive enzymes, whereas the endocrine compartment consists of four distinct hormone-producing cell types. Studies that further our knowledge of the basic mechanisms that underlie the formation of the pancreas will be crucial for understanding the development and homeostasis of this organ and of the mechanisms that cause diabetes. This information is also pivotal for any attempt to generate functional insulin-producing β-cells that are suitable for transplantation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The pancreas develops as evaginations of the primitive gut epithelium.
Figure 2: The pancreas is a mixed exocrine and endocrine organ.
Figure 3: Factors that stimulate proliferation of pancreatic cells.
Figure 4: Early stages of pancreatic organogenesis.
Figure 5: Nestin is expressed in pancreatic mesenchymal cells.

Similar content being viewed by others

References

  1. Wessels, N. K. & Cohen, J. H. Early pancreas organogenesis: morphogenesis, tissue interactions and mass effects. Dev. Biol. 15, 237–270 (1967).A detailed analysis of the specification of pancreas, early pancreatic development and the influence of neighbouring tissues such as the mesenchyme. It includes beautiful and informative pictures of the formation of the pancreatic buds.

    Article  Google Scholar 

  2. Pictet, R. & Rutter, W. J. in Handbook of Physiology (eds Steiner, D. F. & Frenkel, N.) 25–66 (Williams & Wilkins, Washington DC, 1972).

    Google Scholar 

  3. Edlund, H. Transcribing pancreas. Diabetes 47, 1817–1823 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Edlund, H. Pancreas: how to get there from the gut? Curr. Opin. Cell Biol. 11, 663–668 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Sander, M. & German, M. S. The β cell transcription factors and the development of the pancreas. J. Mol. Med. 75, 327–340 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. St-Ogne, L., Wehr, R. & Gruss, P. Pancreas development and diabetes. Curr. Opin. Genet. Dev. 9, 295–300 (1999).

    Article  Google Scholar 

  7. Shapiro, A. M. et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 343, 230–238 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Jonsson, J., Carlsson, L., Edlund, T. & Edlund, H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 371, 606–609 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Offield, M. F. et al. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 122, 983–995 (1996).

    CAS  PubMed  Google Scholar 

  10. Ahlgren, U., Jonsson, J. & Edlund, H. The morphogenesis of the pancreatic mesenchyme is uncoupled from that of the pancreatic epithelium in PDX1/IPF1-deficient mice. Development 122, 1409–1416 (1996).

    CAS  PubMed  Google Scholar 

  11. Ahlgren, U., Jonsson, J., Jonsson, L., Simu, K. & Edlund, H. β-cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the β-cell phenotype and maturity onset diabetes. Genes Dev. 12, 1763–1768 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li, H., Arber, S., Jessell, T. M. & Edlund, H. Selective agenesis of the dorsal pancreas in mice lacking homeobox gene Hlxb9. Nature Genet. 23, 67–70 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Harrison, K. A., Thaler, J., Pfaff, S. L., Gu, H. & Kehrl, J. H. Pancreas dorsal lobe agenesis and abnormal islets of Langerhans in Hlxb9-deficient mice. Nature Genet. 23, 71–75 (1999).References 12 and 13 describe the role of Hlxb9 during pancreas development. Like Ipf1/Pdx1, Hlxb9 is transiently expressed in the early pancreatic buds, and later in development its expression becomes restricted to differentiated β-cells. This study shows that Hlxb9 is required for the initiation of the dorsal pancreatic programme and for ensuring proper endocrine-cell differentiation in the ventral bud.

    Article  CAS  PubMed  Google Scholar 

  14. Sussel, L. et al. Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic β cells. Development 125, 2213–2221 (1998).

    CAS  PubMed  Google Scholar 

  15. Sander, M. et al. Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of β-cell formation in the pancreas. Development 127, 5533–5540 (2000).

    CAS  PubMed  Google Scholar 

  16. Ahlgren, U., Pfaff, S., Jessel, T. M., Edlund, T. & Edlund, H. Independent requirement for ISL1 in the formation of the pancreatic mesenchyme and islet cells. Nature 385, 257–260 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Sosa-Pineda, B., Chowdhury, K., Torres, M., Oliver, G. & Gruss, P. The Pax4 gene is essential for differentiation of insulin-producing β cells in the mammalian pancreas. Nature 386, 399–402 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Sander, M. et al. Genetic analysis reveals that PAX6 is required for normal transcription of pancreatic hormone genes and islet development. Genes Dev. 11, 1662–1673 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. St-Onge, L., Sosa-Pineda, B., Chowdhury, K., Mansouri, A. & Gruss, P. Pax6 is required for differentiation of glucagon-producing α-cells in mouse pancreas. Nature 387, 406–409 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Naya, F. J. et al. Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice. Genes Dev. 11, 2323–2334 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gradwohl, G., Dierich, A., LeMeur, M. & Guillemot, F. Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc. Natl Acad. Sci. USA 97, 1607–1611 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Krapp, A. et al. The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas. Genes Dev. 12, 3752–3763 (1998).The authors describe a targeted inactivation of the exocrine transcription factor p48, which is the first gene to be described that selectively impairs exocrine pancreatic development. This paper also provides genetic evidence that islet-cell differentiation, but not organization, is independent of exocrine-cell differentiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pin, C. L., Rukstalis, J. M., Johnson, C. & Konieczny, S. F. The bHLH transcription factor Mist1 is required to maintain exocrine pancreas cell organization and acinar cell identity. J. Cell Biol. 155, 519–530 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Boj, S. F., Parrizas. M., Maestro, M. A. & Ferrer, J. A transcription factor regulatory circuit in differentiated pancreatic cells. Proc. Natl Acad. Sci. USA 98, 14481–14486 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dukes, I. D. et al. Defective pancreatic β-cell glycolytic signaling in hepatocyte nuclear factor-1α-deficient mice. J. Biol. Chem. 273, 24457–24464 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Kaestner, K. H., Katz, J., Liu, Y., Drucker, D. J. & Schutz, G. Inactivation of the winged helix transcription factor HNF3α affects glucose homeostasis and islet glucagon gene expression in vivo. Genes Dev. 13, 495–504 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shih, D. Q., Navas, M. A., Kuwajima, S., Duncan, S. A. & Stoffel, M. Impaired glucose homeostasis and neonatal mortality in hepatocyte nuclear factor 3α-deficient mice. Proc. Natl Acad. Sci. USA 96, 10152–10157 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sund, N. J. et al. Tissue-specific deletion of Foxa2 in pancreatic β cells results in hyperinsulinemic hypoglycemia. Genes Dev. 15, 1706–1715 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rausa, F. et al. The cut-homeodomain transcriptional activator HNF-6 is coexpressed with its target gene HNF-3β in the developing murine liver and pancreas. Dev. Biol. 192, 228–246 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Landry, C. et al. HNF-6 is expressed in endoderm derivatives and nervous system of the mouse embryo and participates to the cross-regulatory network of liver-enriched transcription factors. Dev. Biol. 192, 247–257 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Jacquemin, P. et al. Transcription factor hepatocyte nuclear factor 6 regulates pancreatic endocrine cell differentiation and controls expression of the proendocrine gene ngn3. Mol. Cell. Biol. 20, 4445–4454 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Golosow, N. & Grobstein, C. Epitheliomesenchymal interaction in pancreatic morphogenesis. Dev. Biol. 4, 242–255 (1962).

    Article  CAS  PubMed  Google Scholar 

  33. Miettinen, P. J. et al. Impaired migration and delayed differentiation of pancreatic islet cells in mice lacking EGF-receptors. Development 127, 2617–2627 (2000).

    CAS  PubMed  Google Scholar 

  34. Erickson, S. L. et al. ErbB3 is required for normal cerebellar and cardiac development: a comparison with ErbB2- and heregulin-deficient mice. Development 124, 4999–5011 (1997).

    CAS  PubMed  Google Scholar 

  35. Cras-Meneur, C., Elghazi, L., Czernichow, P. & Scharfmann, R. Epidermal growth factor increases undifferentiated pancreatic embryonic cells in vitro: a balance between proliferation and differentiation. Diabetes 50, 1571–1579 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Kato, S. & Sekine, K. FGF–FGFR signaling in vertebrate organogenesis. Cell. Mol. Biol. 45, 631–638 (1999).

    CAS  PubMed  Google Scholar 

  37. Szebenyi, G. & Fallon, J. F. Fibroblast growth factors as multifunctional signaling factors. Int. Rev. Cytol. 185, 45–106 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Le Bras, S., Miralles, F., Basmaciogullari, A., Czernichow, P. & Scharfmann, R. Fibroblast growth factor 2 promotes pancreatic epithelial cell proliferation via functional fibroblast growth factor receptors during embryonic life. Diabetes 47, 1236–1242 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Miralles, F., Czernichow, P., Ozaki, K., Itoh, N. & Scharfmann, R. Signaling through fibroblast growth factor receptor 2b plays a key role in the development of the exocrine pancreas. Proc. Natl Acad. Sci. USA 96, 6267–6272 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Celli, G., LaRochelle, W. J., Mackem, S., Sharp, R. & Merlino, G. Soluble dominant-negative receptor uncovers essential roles for fibroblast growth factors in multi-organ induction and patterning. EMBO J. 17, 1642–1655 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ohuchi, H. et al. FGF10 acts as a major ligand for FGF receptor 2 IIIb in mouse multi-organ development. Biochem. Biophys. Res. Commun. 277, 643–649 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Bhushan, A. et al. Fgf10 is essential for maintaining the proliferative capacity of epithelial progenitor cells during early pancreatic organogenesis. Development 128, 5109–5117 (2001).References 38–42 show that FGF signalling stimulates pancreatic epithelial proliferation and exocrine differentiation, and that FGFR2b/FGF10 signalling is required for pancreatic epithelial-cell expansion.

    CAS  PubMed  Google Scholar 

  43. Hart, A. W., Baeza, N., Apelqvist, Å. & Edlund, H. Attenuation of FGF-signalling in mouse β-cells leads to diabetes. Nature 408, 864–868 (2000).The authors show that the requirement for Fgfr1c- signalling in adult β-cells for maintenance of β-cell function is downstream of Ipf1/Pdx1 function. Reference 47 provides a model of Fgfr1c signalling in adult β-cells.

    Article  CAS  PubMed  Google Scholar 

  44. Otonkoski, T. et al. A role for hepatocyte growth factor/scatter factor in fetal mesenchyme-induced pancreatic β-cell growth. Endocrinology 137, 3131–3139 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Miralles, F., Philippe, P., Czernichow, P. & Scharfmann, R. Expression of nerve growth factor and its high-affinity receptor Trk-A in the rat pancreas during embryonic and fetal life. J. Endocrinol. 156, 431–439 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Lammert, E., Cleaver, O., & Melton, D. Induction of pancreatic differentiation by signals from blood vessels. Science 294, 564–567 (2001).This paper highlights the stimulatory effect of endothelial cells in pancreatic islet-cell generation and proposes a role for VEGF in this process.

    Article  CAS  PubMed  Google Scholar 

  47. Edlund, H. Factors controlling pancreatic cell differentiation and function. Diabetologia 44, 1071–1079 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Apelqvist, Å. et al. Notch-signalling controls pancreatic cell differentiation. Nature 400, 877–881 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Jensen, J. et al. Control of endodermal endocrine development by Hes-1. Nature Genet. 24, 36–44 (2000).References 21, 48 and 49 provide evidence that, analogous to its role in the nervous system, Notch signalling controls cell differentiation in the pancreas and that ngn3 functions as a pro-endocrine gene. Therefore, in the developing pancreas, Notch signalling seems to control the choice between endocrine and exocrine fates, so that a lack of this signalling results in high expression levels of ngn3 , promoting the endocrine fate (cells with active Notch signalling adopt the exocrine fate). Absence of ngn3 function results in a selective loss of all pancreatic endocrine cells, confirming the role of ngn3.

    Article  CAS  PubMed  Google Scholar 

  50. Kim, S. K., Hebrok, M. & Melton, D. A. Notochord to endoderm signalling is required for pancreas development. Development 124, 4243–4252 (1997).

    CAS  PubMed  Google Scholar 

  51. Hebrok, M., Kim, S. K. & Melton, D. A. Notochord repression of endodermal Sonic hedgehog permits pancreas development. Genes Dev. 12, 1705–1713 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Deutsch, G., Jung, J., Zheng, M., Lora, J. & Zaret, K. S. A bipotential precursor population for pancreas and liver within the embryonic endoderm. Development 128, 871–881 (2001).

    CAS  PubMed  Google Scholar 

  53. Pearse, A. G. E. Islet cell precursors are neurones. Nature 295, 96–97 (1982).

    Article  CAS  PubMed  Google Scholar 

  54. Le Douarin, N. M. On the origin of pancreatic endocrine cells. Cell 53, 169–171 (1988).

    Article  CAS  PubMed  Google Scholar 

  55. Pictet, R. L., Rall, L. B., Phelps, P. & Rutter, W. J. The neural crest and the origin of the insulin-producing and other gastrointestinal hormone producing cells. Science 191, 191–192 (1976).

    Article  CAS  PubMed  Google Scholar 

  56. Fontaine, J. & Le Douarin, N. M. Analysis of endoderm formation in the avian blastoderm by the use of quail–chick chimaeras. The problem of the neurectodermal origin of the cells of the APUD series. J. Embryol. Exp. Morphol. 41, 209–222 (1977).

    CAS  PubMed  Google Scholar 

  57. Lendahl, U., Zimmerman, L. B. & McKay, R. D. CNS stem cells express a new class of intermediate filament protein. Cell 23, 585–595 (1990).

    Article  Google Scholar 

  58. Hunziker, E. & Stein, M. Nestin-expressing cells in the pancreatic islets of Langerhans. Biochem. Biophys. Res. Commun. 271, 116–119 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Zulewski, H. et al. Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes 50, 521–533 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Lumelsky, N. et al. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292, 1389–1394 (2000).

    Article  Google Scholar 

  61. Lee, S. H., Lumelsky, N., Studer, L., Auerbach, J. M. & McKay, R. D. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nature Biotechnol. 18, 675–679 (2000).

    Article  CAS  Google Scholar 

  62. Alpert, S., Hanahan, D. & Teitelman, G. Hybrid insulin genes reveal a developmental lineage for pancreatic endocrine cells and imply a relationship with neurons. Cell 53, 295–308 (1988).

    Article  CAS  PubMed  Google Scholar 

  63. Nakamura, T. et al. Insulin production in a neuroectodermal tumor that expresses islet factor-1, but not pancreatic-duodenal homeobox 1. J. Clin. Endocrinol. Metab. 86, 1795–1800 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Assady, S. et al. Insulin production by human embryonic stem cells. Diabetes 50, 1691–1697 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Soria, B. et al. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 49, 157–162 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Selander, L. & Edlund, H. Nestin is expressed in mesenchymal and not epithelial cells of the developing mouse pancreas. Mech. Dev. 113, 189–192 (2002).The authors show that the intermediate filament protein nestin is expressed in mesenchymal cells of the gastrointestinal tract, including the pancreas, and not in pancreatic progenitor cells, nor in differentiated pancreatic cell types.

    Article  CAS  PubMed  Google Scholar 

  67. Githens, S. The pancreatic duct cell: proliferative capabilities, specific characteristics, metaplasia, isolation, and culture. J. Pediatr. Gastroenterol. Nutr. 7, 486–506 (1988).

    Article  CAS  PubMed  Google Scholar 

  68. Rosenberg, L. In vivo cell transformation: neogenesis of β cells from pancreatic ductal cells. Cell Transplant. 4, 371–383 (1995).

    CAS  PubMed  Google Scholar 

  69. Bouwens, L. Transdifferentiation versus stem cell hypothesis for the regeneration of islet β-cells in the pancreas. Microsc. Res. Tech. 43, 332–336 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Stoffers, D. A., Ferrer, J., Clarke, W. L. &. Habener, J. F. Early-onset type-II diabetes mellitus (MODY4) linked to IPF1. Nature Genet. 17, 138–139 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Hattersley, A. T. Maturity-onset diabetes of the young: clinical heterogeneity explained by genetic heterogeneity. Diabetes Med. 15, 15–24 (1998).

    Article  CAS  Google Scholar 

  72. Malecki, M. T. et al. Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus. Nature Genet. 23, 323–328 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Slack, J. M. Developmental biology of the pancreas. Development 121, 1569–1580 (1995).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in my laboratories is supported by the Juvenile Diabetes Research Foundation, New York, the Swedish Research Council, the European Commission, The Göran Gustafsson's Foundation, the Wallenberg Foundation and The Diabetes Research Foundation, Miami. I wish to thank T. Edlund, for critical reading and helpful comments, U. Ahlgren for help with figures, and members of the laboratories at Umeå University, Umeå, Sweden, and the Diabetes Research Institute, University of Miami, USA, for discussions.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Flybase

wingless

LocusLink

BMP

Dll1

EGF

Egfr

FGF

Fgf1

Fgf2

Fgf4

Fgf5

Fgf7

Fgf10

Fgfr1

Fgfr2b

FGFR2

GCK

glucagon

Hes1

HGF

Hlxb9

HNF1A

HNF4A

insulin

IPF1

Isl1

metallothionein

nestin

NeuroD

NEUROD

ngn3

Nkx2.2

Nkx6.1

Notch3

pancreatic polypeptide

Pax6

Pdx1

somatostatin

TGF-β

VEGF

OMIM

Alzheimer disease

MODY

MODY1

MODY2

MODY3

MODY4

MODY5

MODY6

Parkinson disease

type 1 diabetes

type 2 diabetes

Glossary

ACINAR CELLS

A group of secretory cells surrounding a cavity; in the pancreas, they secrete pancreatic enzymes such as α-amylase or chymotrypsinogen.

ZYMOGEN

An inactive enzyme precursor that is chemically altered by hydrolysis to the active form of the enzyme.

ANLAGEN

A precursor tissue before its determination and differentiation.

CATECHOLAMINE

The neurotransmitters dopamine, norepinephrine and epinephrine.

EMBRYOID BODIES

Clumps or cellular structures that arise when embryonic cells are cultured in vitro; they contain tissues from all three germ layers: endoderm, mesoderm and ectoderm.

CELL-TRAPPING EXPERIMENTS

A technique for the selective isolation of cells on the basis of expression of selectable markers that are expressed from a promoter that is specific to the given cell type.

DUODENUM

The first part of the small intestine, immediately posterior to the stomach.

GASTRIC PYLORIC ANTRUM

The most posterior part of the stomach, immediately anterior to the small intestine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edlund, H. Pancreatic organogenesis — developmental mechanisms and implications for therapy. Nat Rev Genet 3, 524–532 (2002). https://doi.org/10.1038/nrg841

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg841

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing