Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

Neurospora: a model of model microbes

Abstract

In the 1940s, studies with Neurospora pioneered the use of microorganisms in genetic analysis and provided the foundations for biochemical genetics and molecular biology. What has happened since this orange mould was used to show that genes control metabolic reactions? How did it come to be the fungal counterpart of Drosophila? We describe its continued use during the heyday of research with Escherichia coli and yeast, and its emergence as a biological model for higher fungi.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neurospora crassa.

References

  1. Perkins, D. D. Neurospora: the organism behind the molecular revolution. Genetics 130, 687–701 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Davis, R. H. Neurospora: Contributions of a Model Organism (Oxford Univ. Press, New York, 2000).

    Google Scholar 

  3. Perkins, D. D., Radford, A. & Sachs, M. S. The Neurospora Compendium: Chromosomal Loci (Academic, San Diego, California, 2001).

    Google Scholar 

  4. Perkins, D. D. & Davis, R. H. Neurospora at the millennium. Fungal Genet. Biol. 31, 153–167 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Shear, C. L. & Dodge, B. O. Life histories and heterothallism of the red bread-mold fungi of the Monilia sitophila group. J. Agric. Res. 34, 1019–1042 (1927).

    Google Scholar 

  6. Perkins, D. D. & Davis, R. H. Neurospora chronology 1843–2002. Fungal Genet. Newslett. 49 (in the press).

  7. Lindegren, C. C. A six point map of the sex chromosome of Neurospora crassa. J. Genet. 32, 243–256 (1936).

    Article  Google Scholar 

  8. Butenandt, A., Weidel, W. & Becker, E. Kyknurenin als Augenpigmentbildung auslösendes Agens bei Insekten. Naturwissenshaften 28, 63–64 (1940).

    Article  CAS  Google Scholar 

  9. Beadle, G. W. & Tatum, E. L. Genetic control of biochemical reactions in Neurospora. Proc. Natl Acad. Sci. USA 27, 499–506 (1941).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Horowitz, N. H. The origins of molecular genetics: one gene, one enzyme. Bioessays 3, 37–40 (1984).

    Article  Google Scholar 

  11. Horowitz, N. H. Fifty years ago: the Neurospora revolution. Genetics 127, 631–635 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Beadle, G. W. Biochemical genetics. Chem. Rev. 37, 15–96 (1945).

    Article  CAS  Google Scholar 

  13. Ryan, F. J., Beadle, G. W. & Tatum, E. L. The tube method of mesuring the growth rate of Neurospora. Am. J. Bot. 30, 784–799 (1943).

    Article  Google Scholar 

  14. Ryan, F. J. Selected methods of Neurospora genetics. Methods Med. Res. 3, 51–75 (1950).

    Google Scholar 

  15. Barratt, R. W., Newmeyer, D. L., Perkins, D. D. & Garnjobst, L. Map construction in Neurospora crassa. Adv. Genet. 6, 1–93 (1954).

    Article  CAS  PubMed  Google Scholar 

  16. Davis, R. H. & de Serres, F. J. Genetic and microbiological research techniques for Neurospora crassa. Methods Enzymol. 17A, 79–143 (1970).

    Article  Google Scholar 

  17. Feldman, J. F. & Hoyle, M. N. Isolation of circadian clock mutants of Neurospora crassa. Genetics 75, 605–613 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Perkins, D. D. Chromosome rearrangements in Neurospora and other filamentous fungi. Adv. Genet. 36, 239–398 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Perkins, D. D. & Barry, E. G. The cytogenetics of Neurospora. Adv. Genet. 19, 133–285 (1977).

    Article  CAS  PubMed  Google Scholar 

  20. Turner, B. C. & Perkins, D. D. Neurospora from natural populations: a global study. Fungal Genet. Biol. 32, 67–92 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Yanofsky, C. Advancing our knowledge in biochemistry, genetics, and microbiology through studies of tryptophan metabolism. Annu. Rev. Biochem. 70, 1–37 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Pasteur, L. Address at Université de Lille. 7 December 1884.

  23. Braun, E. L., Halpern, A. L., Nelson, M. A. & Natvig, D. O. Large-scale comparison of fungal sequence information: mechanisms of innovation in Neurospora crassa and gene loss in Saccharomyces cerevisiae. Genome Res. 10, 416–430 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Beadle, G. W. Genes and the chemistry of the organism. Am. Sci. 34, 31–53, 76 (1946).

    CAS  PubMed  Google Scholar 

  25. Raju, N. B. Meiosis and ascospore genesis in Neurospora. Eur. J. Cell Biol. 23, 208–223 (1980).

    CAS  PubMed  Google Scholar 

  26. Lee, K., Loros, J. J. & Dunlap, J. C. Interconnected feedback loops in the Neurospora circadian system. Science 289, 107–110 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Seiler, S., Plamann, M. & Schliwa, M. Kinesin and dynein mutants provide novel insights into the roles of vesicle traffic during cell morphogenesis in Neurospora crassa. Curr. Biol. 9, 779–785 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Skupski, M. P., Jackson, D. A. & Natvig, D. O. Phylogenetic analysis of heterothallic Neurospora species. Fungal Genet. Biol. 21, 153–162 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Singer, M. J. & Selker, E. U. Genetic and epigenetic inactivation of repetitive sequences in Neurospora crassa: RIP, DNA methylation, and quelling. Curr. Top. Microbiol. Immunol. 197, 165–177 (1995).

    CAS  PubMed  Google Scholar 

  30. Shiu, P. K. T., Raju, N. B., Zickler, D. & Metzenberg, R. L. Meiotic silencing by unpaired DNA. Cell 107, 905–916 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Cogoni, C. & Macino, G. Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature 399, 166–169 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Cogoni, C. Homology-dependent gene silencing mechanisms in fungi. Annu. Rev. Microbiol. 55, 381–406 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Tamaru, H. & Selker, E. U. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414, 277–283 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Springer, M. L. & Yanofsky, C. A morphological and genetic analysis of conidiophore development in Neurospora crassa. Genes Dev. 13, 559–571 (1989).

    Article  Google Scholar 

Download references

Acknowledgements

Early work in the Beadle–Tatum laboratory was supported by the Rockefeller Foundation and the Nutrition Foundation. Much of the later research on Neurospora, including that in the authors' laboratories, has been supported by the National Institutes of Health, the National Science Foundation and the American Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rowland H. Davis.

Related links

Related links

FURTHER INFORMATION

1982 Neurospora Compendium

Fungal Genetics Stock Center

Genome Resources for Neurospora

Neurospora Genome Project (MIT)

Neurospora crassa — list of ORFs

Neurospora Genome Project (Munich)

Neurospora Genome Project (New Mexico)

Fungal Genome Resource (Georgia)

Live cell imaging of hyphal fusion in Neurospora crassa

MicrobeLibrary.org

Neurospora movies (Fungal Cell Biology Group)

Glossary

ASCOSPORE

A black, thick-walled spore that encloses a nucleus; one of the four haploid products of meiosis.

ASCUS

The cell that develops after a fusion of nuclei of opposite mating type. In Neurospora crassa, the mature ascus is a narrow sac with the ascospores in a linear order reflecting the events of meiosis.

CONIDIUM

An asexual spore, containing 1–4 nuclei, that is produced as a result of mitosis and that is formed from the ends or sides of hyphae, or filaments.

GENE CONVERSION

A non-reciprocal process in which a gene is replaced by its homologue during meiosis. This is detectable in Neurospora crassa as 6:2 or 5:3 distorted genotypic ratios of ascospores in individual asci.

HETEROKARYON

A mycelium that contains two or more genetically different nuclear types.

HETEROTHALLISM

A condition of self-sterility imposed by mating-type differences. There are two mating types in Neurospora, A and a, and mating and completion of the sexual cycle require that parents be of opposite types.

MEIOTIC DRIVE

A mechanism operating in the sexual phase that results in unequal survival of alternative types of meiotic products of a heterozygote.

QUINATE

A key compound in the pathway for catabolism of aromatic compounds. The pathway includes a step that can be catalysed both by a catabolic enzyme and by an enzyme of the aromatic biosynthetic pathway.

RNA INTERFERENCE

(RNAi). A process by which double-stranded RNA specifically silences the expression of homologous genes through degradation of their cognate mRNA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, R., Perkins, D. Neurospora: a model of model microbes. Nat Rev Genet 3, 397–403 (2002). https://doi.org/10.1038/nrg797

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg797

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing