Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cardiac imaging for assessment of left atrial appendage stasis and thrombosis

Key Points

  • An estimated 47% of thrombi in valvular atrial fibrillation (AF) and 91% of thrombi in nonvalvular AF are localized in the left atrial appendage (LAA)

  • LAA flow stasis (or spontaneous echocardiographic contrast; SEC) is a pattern of blood flow (echogenicity) attributed to ultrasonic backscatter from blood cell aggregates that form under low shear conditions

  • SEC is formed through protein-mediated (particularly fibrinogen) red cell aggregation promoting red cell rouleaux formation, and is the cardiac factor most-strongly associated with LAA thrombus formation

  • Transoesophageal echocardiography is the gold standard for the evaluation of LAA stasis and thrombosis, and promising results have been reported for intracardiac echocardiography and transthoracic echocardiography with contrast

  • Cardiac CT is an accurate, noninvasive imaging modality for the detection of LAA thrombi, particularly when delayed imaging acquisition protocols are used

  • Prospective studies to validate the use of cardiac MRI for LAA assessment are needed, because this technique avoids the use of ionizing radiation and iodinated contrast media

Abstract

Atrial fibrillation (AF) is the most-common arrhythmia in the elderly population (age >65 years). The left atrial appendage (LAA) is the main location of thrombus formation, predominantly in patients with nonvalvular AF. This Review is focused on the pathophysiology, assessment, and clinical implications of stasis (or spontaneous echocardiographic contrast; SEC) and thrombus formation in the LAA. The gold-standard modality for assessment of SEC and thrombus in the LAA is echocardiography, particularly transoesophageal echocardiography (TEE). Cardiac CT (CCT) is an accurate, noninvasive alternative to TEE for the detection of LAA thrombi, distinctly when delayed-imaging acquisition protocols are used. Prospective studies to validate the use of cardiac MRI (CMR) for this purpose are needed, and will avoid the need for radiation and iodinated contrast. CCT or CMR could potentially be implemented to rule out LAA thrombus, avoiding unnecessary preprocedural TEE. Cardiac imaging is also of primary importance in the setting of LAA closure devices and electrophysiological studies. New trials are needed to compare the various imaging modalities, with surgicopathological findings as a reference standard.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LAA anatomy (classic 'chicken wing' morphology).
Figure 2: LAA morphologies.
Figure 3: Transoesophageal echocardiography of the left atrial appendage.
Figure 4: Transthoracic echocardiography of the left atrial appendage (apical four-chamber view).
Figure 5: Blood flow velocities measured by transoesophageal echocardiography.
Figure 6: Cardiac CT of the left atrial appendage.
Figure 7: HSROC curves of a meta-analytical comparison of cardiac CT and transoesophageal echocardiography for the detection of left atrial appendage thrombus.
Figure 8: Cardiac MRI in a patient with histologically proven amyloid light-chain amyloidosis.

Similar content being viewed by others

References

  1. Lloyd-Jones, D. M. et al. Lifetime risk for development of atrial fibrillation: the Framingham Heart Study. Circulation 110, 1042–1046 (2004).

    Article  PubMed  Google Scholar 

  2. Heeringa, J. et al. Prevalence, incidence and lifetime risk of atrial fibrillation: the Rotterdam study. Eur. Heart J. 27, 949–953 (2006).

    Article  PubMed  Google Scholar 

  3. Go, A. S. et al. Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study. JAMA 285, 2370–2375 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Miyasaka, Y. et al. Secular trends in incidence of atrial fibrillation in Olmsted County, Minnesota, 1980 to 2000, and implications on the projections for future prevalence. Circulation 114, 119–125 (2006).

    Article  PubMed  Google Scholar 

  5. Wolf, P. A., Abbott, R. D. & Kannel, W. B. Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke 22, 983–988 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Healey, J. S. et al. Subclinical atrial fibrillation and the risk of stroke. N. Engl. J. Med. 366, 120–129 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Madden, J. L. Resection of the left auricular appendix; a prophylaxis for recurrent arterial emboli. JAMA 140, 769–772 (1949).

    Article  CAS  Google Scholar 

  8. Blackshear, J. L. & Odell, J. A. Appendage obliteration to reduce stroke in cardiac surgical patients with atrial fibrillation. Ann. Thorac. Surg. 61, 755–759 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Ernst, G. et al. Morphology of the left atrial appendage. Anat. Rec. 242, 553–561 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Heist, E. K. et al. Analysis of the left atrial appendage by magnetic resonance angiography in patients with atrial fibrillation. Heart Rhythm 3, 1313–1318 (2006).

    Article  PubMed  Google Scholar 

  11. Di Biase, L. et al. Does the left atrial appendage morphology correlate with the risk of stroke in patients with atrial fibrillation? Results from a multicentre study. J. Am. Coll. Cardiol. 60, 531–538 (2012).

    Article  PubMed  Google Scholar 

  12. Veinot, J. P. et al. Anatomy of the normal left atrial appendage: a quantitative study of age-related changes in 500 autopsy hearts: implications for echocardiographic examination. Circulation 96, 112–115 (1997).

    Article  Google Scholar 

  13. Grimm, R. A. et al. Impact of electrical cardioversion for atrial fibrillation on left atrial appendage function and spontaneous echo contrast: characterization by simultaneous transesophageal echocardiography. J. Am. Coll. Cardiol. 22, 1359–1366 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Pollick, C. & Taylor, D. Assessment of left atrial appendage function by transesophageal echocardiography. Implications for the development of thrombus. Circulation 84, 223–231 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Hoit, B. D., Shao, Y. & Gabel, M. Influence of acutely altered loading conditions on left atrial appendage flow velocities. J. Am. Coll. Cardiol. 24, 1117–1123 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Rodeheffer, R. J. et al. Molecular forms of atrial natriuretic factor in normal and failing human myocardium. Circulation 88, 364–371 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Inoue, S., Murakami, Y., Sano, K., Katoh, H. & Shimada, T. Atrium as a source of brain natriuretic polypeptide in patients with atrial fibrillation. J. Card. Fail. 6, 92–96 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Feigenbaum, H. Echocardiography 2nd edn (Lea and Febiger, 1976).

    Google Scholar 

  19. Fatkin, D., Kelly, R. P. & Feneley, M. P. Relations between left atrial appendage blood flow velocity, spontaneous echocardiographic contrast and thromboembolic risk in vivo. J. Am. Coll. Cardiol. 23, 961–969 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Sadanandan, S. & Sherrid, M. V. Clinical and echocardiographic characteristics of left atrial spontaneous echo contrast in sinus rhythm. J. Am. Coll. Cardiol. 35, 1932–1938 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Tsai, L. M., Chen, J. H., Lin, L. J. & Teng, J. K. Natural history of left atrial spontaneous echo contrast in nonrheumatic atrial fibrillation. Am. J. Cardiol. 80, 897–900 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Black, I. W., Hopkins, A. P., Lee, L. C. & Walsh, W. F. Left atrial spontaneous echo contrast: a clinical and echocardiographic analysis. J. Am. Coll. Cardiol. 18, 398–404 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Leung, D. Y., Black, I. W., Cranney, G. B., Hopkins, A. P. & Walsh, W. F. Prognostic implications of left atrial spontaneous echo contrast in nonvalvular atrial fibrillation. J. Am. Coll. Cardiol. 24, 755–762 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Goldman, M. E. et al. Pathophysiologic correlates of thromboembolism in nonvalvular atrial fibrillation: I. Reduced flow velocity in the left atrial appendage (the Stroke Prevention in Atrial Fibrillation [SPAF-III] study). J. Am. Soc. Echocardiogr. 12, 1080–1087 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Black, I. W. et al. Haematologic correlates of left atrial spontaneous echo contrast and thromboembolism in nonvalvular atrial fibrillation. J. Am. Coll. Cardiol. 21, 451–457 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Conway, D. S., Buggins, P., Hughes, E. & Lip, G. Y. Relation of interleukin-6, C-reactive protein, and the prothrombotic state to transesophageal echocardiographic findings in atrial fibrillation. Am. J. Cardiol. 93, 1368–1373 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Fukuchi, M. et al. Increased von Willebrand factor in the endocardium as a local predisposing factor for thrombogenesis in overloaded human atrial appendage. J. Am. Coll. Cardiol. 37, 1436–1442 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Fatkin, D., Loupas, T., Low, J. & Feneley, M. Inhibition of red cell aggregation prevents spontaneous echocardiographic contrast formation in human blood. Circulation 96, 889–896 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Fuster, V. et al. 2011 ACCF/AHA/HRS focused updates incorporated into the ACC/AHA/ESC 2006 Guidelines for the management of patients with atrial fibrillation: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines developed in partnership with the European Society of Cardiology and in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. J. Am. Coll. Cardiol. 57, e101–e198 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Manning, W. J., Silverman, D. I., Gordon, S. P., Krumholz, H. M. & Douglas, P. S. Cardioversion from atrial fibrillation without prolonged anticoagulation with use of transesophageal echocardiography to exclude the presence of atrial thrombi. N. Engl. J. Med. 328, 750–755 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Aschenberg, W. et al. Transesophageal two-dimensional echocardiography for the detection of left atrial appendage thrombus. J. Am. Coll. Cardiol. 7, 163–166 (1986).

    Article  CAS  PubMed  Google Scholar 

  32. Zabalgoitia, M. et al. Transesophageal echocardiographic correlates of clinical risk of thromboembolism in nonvalvular atrial fibrillation. J. Am. Coll. Cardiol. 31, 1622–1626 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Sallach, J. A. et al. Comprehensive left atrial appendage optimization of thrombus using surface echocardiography: the CLOTS multicentre pilot trial. J. Am. Soc. Echocardiogr. 22, 1165–1172 (2009).

    Article  PubMed  Google Scholar 

  34. Hwang, J. J. et al. Diagnostic accuracy of transesophageal echocardiography for detecting left atrial thrombi in patients with rheumatic heart disease having undergone mitral valve operations. Am. J. Cardiol. 72, 677–681 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Manning, W. J. et al. Accuracy of transesophageal echocardiography for identifying left atrial thrombi. A prospective, intraoperative study. Ann. Intern. Med. 123, 817–822 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. von der Recke, G., Schmidt, H., Illien, S., Lüderitz, B. & Omran, H. Use of transesophageal contrast echocardiography for excluding left atrial appendage thrombi in patients with atrial fibrillation before cardioversion. J. Am. Soc. Echocardiogr. 15, 1256–1261 (2002).

    Article  PubMed  Google Scholar 

  37. Bernier, M. et al. CUTE-CV: a prospective study of enhanced left atrial appendage visualization with microbubble contrast agent use during transesophageal echocardiography guided cardioversion. Echocardiography 30, 1091–1097 (2013).

    PubMed  Google Scholar 

  38. Daniel, W. G. et al. Safety of transesophageal echocardiography: a multicentre survey of 10,419 examinations. Circulation 83, 817–821 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Hilberath, J. N. et al. Safety of transesophageal echocardiography. J. Am. Soc. Echocardiogr. 23, 1115–1127 (2010).

    Article  PubMed  Google Scholar 

  40. Karakus, G. et al. Comparative assessment of left atrial appendage by transesophageal and combined two- and three-dimensional transthoracic echocardiography. Echocardiography 25, 918–924 (2008).

    Article  PubMed  Google Scholar 

  41. Agmon, Y., Khandheria, B. K., Gentile, F. & Seward, J. B. Echocardiographic assessment of the left atrial appendage. J. Am. Coll. Cardiol. 34, 1867–1877 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Ono, M. et al. Improved visualization of the left atrial appendage by transthoracic 2-dimensional tissue harmonic compared with fundamental echocardiographic imaging. J. Am. Soc. Echocardiogr. 11, 1044–1049 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Omran, H. et al. Imaging of thrombi and assessment of left atrial appendage function: a prospective study comparing transthoracic and transoesophageal echocardiography. Heart 81, 192–198 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ren, J. F., Marchlinski, F. E., Callans, D. J. & Herrmann, H. C. Clinical use of AcuNav diagnostic ultrasound catheter imaging during left heart radiofrequency ablation and transcatheter closure procedures. J. Am. Soc. Echocardiogr. 15, 1301–1308 (2002).

    Article  PubMed  Google Scholar 

  45. Ren, J. F. et al. Intracardiac echocardiographic diagnosis of thrombus formation in the left atrial appendage: a complementary role to transesophageal echocardiography. Echocardiography 30, 72–80 (2012).

    Article  PubMed  Google Scholar 

  46. Ren, J. F., Marchlinski, F. E. & Callans, D. J. Left atrial thrombus associated with ablation for atrial fibrillation: identification with intracardiac echocardiography. J. Am. Coll. Cardiol. 43, 1861–1867 (2004).

    Article  PubMed  Google Scholar 

  47. Saksena, S. et al. A prospective comparison of cardiac imaging using intracardiac echocardiography with transesophageal echocardiography in patients with atrial fibrillation: the intracardiac echocardiography guided cardioversion helps interventional procedures study. Circ. Arrhythm. Electrophysiol. 3, 571–577 (2010).

    Article  PubMed  Google Scholar 

  48. Beppu, S. et al. Smoke-like echo in the left atrial cavity in mitral valve disease: its features and significance. J. Am. Coll. Cardiol. 6, 744–749 (1985).

    Article  CAS  PubMed  Google Scholar 

  49. Klein, A. L. et al. Integrated backscatter for quantification of left atrial spontaneous echo contrast. J. Am. Coll. Cardiol. 28, 222–231 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Donal, E. et al. Contrast-enhanced tissue Doppler imaging of the left atrial appendage is a new quantitative measure of spontaneous echocardiographic contrast in atrial fibrillation. Eur. J. Echocardiogr. 9, 5–11 (2008).

    PubMed  Google Scholar 

  51. Jue, J. et al. Pulsed Doppler characterization of left atrial appendage flow. J. Am. Soc. Echocardiogr. 6, 237–244 (1993).

    Article  CAS  PubMed  Google Scholar 

  52. Kamalesh, M., Copeland, T. B. & Sawada, S. Severely reduced left atrial appendage function: a cause of embolic stroke in patients in sinus rhythm? J. Am. Soc. Echocardiogr. 11, 902–904 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Fatkin, D., Kuchar, D. L., Thorburn, C. W. & Feneley, M. P. Transesophageal echocardiography before and during direct current cardioversion of atrial fibrillation: evidence for “atrial stunning” as a mechanism of thromboembolic complications. J. Am. Coll. Cardiol. 23, 307–316 (1994).

    Article  CAS  PubMed  Google Scholar 

  54. Manning, W. J. et al. Impaired left atrial mechanical function after cardioversion: relation to the duration of atrial fibrillation. J. Am. Coll. Cardiol. 23, 1535–1540 (1994).

    Article  CAS  PubMed  Google Scholar 

  55. Antonielli, E. et al. Clinical value of left atrial appendage flow for prediction of long-term sinus rhythm maintenance in patients with nonvalvular atrial fibrillation. J. Am. Coll. Cardiol. 39, 1443–1449 (2002).

    Article  PubMed  Google Scholar 

  56. Achenbach, S. et al. Electron beam computed tomography for the detection of left atrial thrombi in patients with atrial fibrillation. Heart 90, 1477–1478 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim, S. C. et al. Differentiation between spontaneous echocardiographic contrast and left atrial appendage thrombus in patients with suspected embolic stroke using two-phase multidetector computed tomography. Am. J. Cardiol. 106, 1174–1181 (2010).

    Article  PubMed  Google Scholar 

  58. Hur, J. et al. Dual-enhancement cardiac computed tomography for assessing left atrial thrombus and pulmonary veins before radiofrequency catheter ablation for atrial fibrillation. Am. J. Cardiol. 112, 238–244 (2013).

    Article  PubMed  Google Scholar 

  59. Martinez, M. W. et al. Utility of nongated multidetector computed tomography for detection of left atrial thrombus in patients undergoing catheter ablation of atrial fibrillation. JACC Cardiovasc. Imaging 2, 69–76 (2009).

    Article  PubMed  Google Scholar 

  60. Hur, J. et al. Thrombus in the left atrial appendage in stroke patients: detection with cardiac CT angiography—a preliminary report. Radiology 249, 81–87 (2008).

    Article  PubMed  Google Scholar 

  61. Hur, J. et al. Left atrial appendage thrombi in stroke patients: detection with two-phase cardiac CT angiography versus transesophageal echocardiography. Radiology 251, 683–690 (2009).

    Article  PubMed  Google Scholar 

  62. Hur, J. et al. Cardioembolic stroke: dual-energy cardiac CT for differentiation of left atrial appendage thrombus and circulatory stasis. Radiology 263, 688–695 (2012).

    Article  PubMed  Google Scholar 

  63. Hur, J. et al. Dual-enhanced cardiac CT for detection of left atrial appendage thrombus in patients with stroke: a prospective comparison study with transesophageal echocardiography. Stroke 42, 2471–2477 (2011).

    Article  PubMed  Google Scholar 

  64. Romero, J. et al. Detection of left atrial appendage thrombus by cardiac computed tomography in patients with atrial fibrillation: a meta-analysis. Circ. Cardiovasc. Imaging 6, 185–194 (2013).

    Article  PubMed  Google Scholar 

  65. Barrett, B. J., & Parfrey, P. S. Clinical practice. Preventing nephropathy induced by contrast medium. N. Engl. J. Med. 354, 379–386 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Zahuranec, D. B. et al. Pilot study of cardiac magnetic resonance imaging for detection of embolic source after ischemic stroke. J. Stroke Cerebrovasc. Dis. 21, 794–800 (2012).

    Article  PubMed  Google Scholar 

  67. Mohrs, O. K. et al. Thrombus detection in the left atrial appendage using contrast-enhanced MRI: a pilot study. AJR Am. J. Roentgenol. 186, 198–205 (2006).

    Article  PubMed  Google Scholar 

  68. Ohyama, H. et al. Comparison of magnetic resonance imaging and transesophageal echocardiography in detection of thrombus in the left atrial appendage. Stroke 34, 2436–2439 (2003).

    Article  PubMed  Google Scholar 

  69. Weinsaft, J. W. et al. Contrast-enhanced anatomic imaging as compared to contrast-enhanced tissue characterization for detection of left ventricular thrombus. JACC Cardiovasc. Imaging 2, 969–979 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Rathi, V. K. et al. Contrast-enhanced CMR is equally effective as TEE in the evaluation of left atrial appendage thrombus in patients with atrial fibrillation undergoing pulmonary vein isolation procedure. Heart Rhythm 10, 1021–1027 (2013).

    Article  PubMed  Google Scholar 

  71. Baczek, V. L., Chen, W. T., Kluger, J. & Coleman, C. I. Predictors of warfarin use in atrial fibrillation in the United States: a systematic review and meta-analysis. BMC Fam. Pract. 13, 5 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Sudlow, M., Thomson, R., Thwaites, B., Rodgers, H. & Kenny, R. A. Prevalence of atrial fibrillation and eligibility for anticoagulants in the community. Lancet 352, 1167–1171 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Kanderian, A. S., Gillinov, A. M., Pettersson, G. B., Blackstone, E. & Klein, A. L. Success of surgical left atrial appendage closure: assessment by transesophageal echocardiography. J. Am. Coll. Cardiol. 52, 924–929 (2008).

    Article  PubMed  Google Scholar 

  74. Blackshear, J. L. et al. Thoracoscopic extracardiac obliteration of the left atrial appendage for stroke risk reduction in atrial fibrillation. J. Am. Coll. Cardiol. 42, 1249–1252 (2003).

    Article  PubMed  Google Scholar 

  75. Shah, S. J. et al. Real-time three-dimensional transesophageal echocardiography of the left atrial appendage: initial experience in the clinical setting. J. Am. Soc. Echocardiogr. 21, 1362–1368 (2008).

    Article  PubMed  Google Scholar 

  76. Wang, Y. et al. Left atrial appendage studied by computed tomography to help planning for appendage closure device placement. J. Cardiovasc. Electrophysiol. 21, 973–982 (2010).

    Article  PubMed  Google Scholar 

  77. Di Biase, L., Burkhardt, J. D., Gibson, D. N. & Natale, A. 2D and 3D TEE evaluation of an early reopening of the LARIAT epicardial left atrial appendage closure device. Heart Rhythm http://dx.doi.org/10.1016/j.hrthm.2013.08.023.

  78. Mosley, W. J. 2nd, Smith, M. R. & Price, M. J. Percutaneous management of late leak after lariat transcatheter ligation of the left atrial appendage in patients with atrial fibrillation at high risk for stroke. Catheter. Cardiovasc. Interv. 83, 664–669 (2014).

    Article  PubMed  Google Scholar 

  79. Pontana, F. et al. Reduced-dose low-voltage chest CT angiography with Sinogram-affirmed iterative reconstruction versus standard-dose filtered back projection. Radiology 267, 609–618 (2013).

    Article  PubMed  Google Scholar 

  80. Komatsu, S. et al. Coronary computed tomography angiography using ultra-low-dose contrast media: radiation dose and image quality. Int. J. Cardiovasc. Imaging 29, 1335–1340 (2013).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article and contributed substantially to the discussion of content. The manuscript was written by J.R., J.J.C., and C.C.T. All the authors reviewed/edited the article before submission.

Corresponding author

Correspondence to Mario J. Garcia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero, J., Cao, J., Garcia, M. et al. Cardiac imaging for assessment of left atrial appendage stasis and thrombosis. Nat Rev Cardiol 11, 470–480 (2014). https://doi.org/10.1038/nrcardio.2014.77

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2014.77

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing