Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

5-Fluorouracil: mechanisms of action and clinical strategies

Key Points

  • The fluoropyrimidine 5-fluorouracil (5-FU) is an antimetabolite drug that is widely used for the treatment of cancer, particularly for colorectal cancer.

  • 5-FU exerts its anticancer effects through inhibition of thymidylate synthase (TS) and incorporation of its metabolites into RNA and DNA.

  • Modulation strategies, such as co-treatment with leucovorin and methotrexate, have been developed to increase the anticancer activity of 5-FU.

  • Molecular biomarkers that predict tumour sensitivity to 5-FU have been identified, including mRNA and protein expression levels of TS.

  • DNA microarray analysis of 5-FU-responsive genes will greatly facilitate the identification of new biomarkers, novel therapeutic targets and the development of rational drug combinations.

Abstract

5-Fluorouracil (5-FU) is widely used in the treatment of cancer. Over the past 20 years, increased understanding of the mechanism of action of 5-FU has led to the development of strategies that increase its anticancer activity. Despite these advances, drug resistance remains a significant limitation to the clinical use of 5-FU. Emerging technologies, such as DNA microarray profiling, have the potential to identify novel genes that are involved in mediating resistance to 5-FU. Such target genes might prove to be therapeutically valuable as new targets for chemotherapy, or as predictive biomarkers of response to 5-FU-based chemotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 5-Fluorouracil metabolism.
Figure 2: Mechanism of thymidylate synthase inhibition by 5-fluorouracil.
Figure 3: Modulation of 5-fluorouracil activity.
Figure 4: Activation of p53 by 5-fluorouracil.

Similar content being viewed by others

References

  1. Rutman, R. J., Cantarow, A. & Paschkis, K. E. Studies on 2-acetylaminofluorene carcinogenesis: III. The utilization of uracil-2-C14 by pre–neoplastic rat liver. Cancer Res. 14, 119 (1954).

    CAS  PubMed  Google Scholar 

  2. IMPACT. Efficacy of adjuvant fluorouracil and folinic acid in colon cancer. International Multicentre Pooled Analysis of Colon Cancer Trials (IMPACT) investigators. Lancet 345, 939–944 (1995).

  3. Johnston, P. G. & Kaye, S. Capecitabine: a novel agent for the treatment of solid tumors. Anticancer Drugs 12, 639–646 (2001).

    CAS  PubMed  Google Scholar 

  4. Giacchetti, S. et al. Phase III multicenter randomized trial of oxaliplatin added to chronomodulated fluorouracil-leucovorin as first-line treatment of metastatic colorectal cancer. J. Clin. Oncol. 18, 136–147 (2000).

    CAS  PubMed  Google Scholar 

  5. Douillard, J. Y. et al. Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancet 355, 1041–1047 (2000).

    CAS  PubMed  Google Scholar 

  6. Wohlhueter, R. M., McIvor, R. S. & Plagemann, P. G. Facilitated transport of uracil and 5-fluorouracil, and permeation of orotic acid into cultured mammalian cells. J. Cell Physiol. 104, 309–319 (1980).

    CAS  PubMed  Google Scholar 

  7. Diasio, R. B. & Harris, B. E. Clinical pharmacology of 5-fluorouracil. Clin. Pharmacokinet. 16, 215–237 (1989).

    CAS  PubMed  Google Scholar 

  8. Sommer, H. & Santi, D. V. Purification and amino acid analysis of an active site peptide from thymidylate synthetase containing covalently bound 5-fluoro-2′-deoxyuridylate and methylenetetrahydrofolate. Biochem. Biophys. Res. Commun. 57, 689–695 (1974).

    CAS  PubMed  Google Scholar 

  9. Santi, D. V., McHenry, C. S. & Sommer, H. Mechanism of interaction of thymidylate synthetase with 5-fluorodeoxyuridylate. Biochemistry 13, 471–481 (1974).

    CAS  PubMed  Google Scholar 

  10. Jackson, R. C. & Grindley, G. B. The Biochemical Basis for Methotrexate Cytotoxicity (eds Sirotnak, F. M., Burchall, J. J., Ensminger, W. D. & Montgomery, J. A.) 289–315 (Academic, New York, 1984).

    Google Scholar 

  11. Houghton, J. A., Tillman, D. M. & Harwood, F. G. Ratio of 2′-deoxyadenosine-5′-triphosphate/thymidine-5′-triphosphate influences the commitment of human colon carcinoma cells to thymineless death. Clin. Cancer Res. 1, 723–730 (1995).

    CAS  PubMed  Google Scholar 

  12. Yoshioka, A. et al. Deoxyribonucleoside triphosphate imbalance. 5-Fluorodeoxyuridine-induced DNA double strand breaks in mouse FM3A cells and the mechanism of cell death. J. Biol. Chem. 262, 8235–8241 (1987).

    CAS  PubMed  Google Scholar 

  13. Aherne, G. W., Hardcastle, A., Raynaud, F. & Jackman, A. L. Immunoreactive dUMP and TTP pools as an index of thymidylate synthase inhibition; effect of tomudex (ZD1694) and a nonpolyglutamated quinazoline antifolate (CB30900) in L1210 mouse leukaemia cells. Biochem. Pharmacol. 51, 1293–1301 (1996).

    CAS  PubMed  Google Scholar 

  14. Mitrovski, B., Pressacco, J., Mandelbaum, S. & Erlichman, C. Biochemical effects of folate-based inhibitors of thymidylate synthase in MGH-U1 cells. Cancer Chemother. Pharmacol. 35, 109–114 (1994).

    CAS  PubMed  Google Scholar 

  15. Lindahl, T. An N-glycosidase from Escherichia coli that releases free uracil from DNA containing deaminated cytosine residues. Proc. Natl Acad. Sci. USA 71, 3649–3653 (1974).

    CAS  PubMed  Google Scholar 

  16. Webley, S. D., Hardcastle, A., Ladner, R. D., Jackman, A. L. & Aherne, G. W. Deoxyuridine triphosphatase (dUTPase) expression and sensitivity to the thymidylate synthase (TS) inhibitor ZD9331. Br. J. Cancer 83, 792–799 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ladner, R. D. The role of dUTPase and uracil-DNA repair in cancer chemotherapy. Curr. Protein Pept. Sci. 2, 361–370 (2001).

    CAS  PubMed  Google Scholar 

  18. Grem, J. L. & Fischer, P. H. Enhancement of 5-fluorouracil's anticancer activity by dipyridamole. Pharmacol. Ther. 40, 349–371 (1989).

    CAS  PubMed  Google Scholar 

  19. Kufe, D. W. & Major, P. P. 5-Fluorouracil incorporation into human breast carcinoma RNA correlates with cytotoxicity. J. Biol. Chem. 256, 9802–9805 (1981).

    CAS  PubMed  Google Scholar 

  20. Glazer, R. I. & Lloyd, L. S. Association of cell lethality with incorporation of 5-fluorouracil and 5-fluorouridine into nuclear RNA in human colon carcinoma cells in culture. Mol. Pharmacol. 21, 468–473 (1982).

    CAS  PubMed  Google Scholar 

  21. Kanamaru, R., Kakuta, H., Sato, T., Ishioka, C. & Wakui, A. The inhibitory effects of 5-fluorouracil on the metabolism of preribosomal and ribosomal RNA in L-1210 cells in vitro. Cancer Chemother. Pharmacol. 17, 43–46 (1986).

    CAS  PubMed  Google Scholar 

  22. Ghoshal, K. & Jacob, S. T. Specific inhibition of pre-ribosomal RNA processing in extracts from the lymphosarcoma cells treated with 5-fluorouracil. Cancer Res. 54, 632–636 (1994).

    CAS  PubMed  Google Scholar 

  23. Santi, D. V. & Hardy, L. W. Catalytic mechanism and inhibition of tRNA (uracil-5-)methyltransferase: evidence for covalent catalysis. Biochemistry 26, 8599–8606 (1987).

    CAS  PubMed  Google Scholar 

  24. Randerath, K., Tseng, W. C., Harris, J. S. & Lu, L. J. Specific effects of 5-fluoropyrimidines and 5-azapyrimidines on modification of the 5 position of pyrimidines, in particular the synthesis of 5-methyluracil and 5-methylcytosine in nucleic acids. Recent Results Cancer Res. 84, 283–297 (1983).

    CAS  PubMed  Google Scholar 

  25. Patton, J. R. Ribonucleoprotein particle assembly and modification of U2 small nuclear RNA containing 5-fluorouridine. Biochemistry 32, 8939–8944 (1993).

    CAS  PubMed  Google Scholar 

  26. Doong, S. L. & Dolnick, B. J. 5-Fluorouracil substitution alters pre-mRNA splicing in vitro. J. Biol. Chem. 263, 4467–4473 (1988).

    CAS  PubMed  Google Scholar 

  27. Samuelsson, T. Interactions of transfer RNA pseudouridine synthases with RNAs substituted with fluorouracil. Nucleic Acids Res. 19, 6139–6144 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Carrico, C. K. & Glazer, R. I. Effect of 5-fluorouracil on the synthesis and translation of polyadenylic acid-containing RNA from regenerating rat liver. Cancer Res. 39, 3694–3701 (1979).

    CAS  PubMed  Google Scholar 

  29. Matherly, L. H., Czajkowski, C. A., Muench, S. P. & Psiakis, J. T. Role for cytosolic folate-binding proteins in the compartmentation of endogenous tetrahydrofolates and the 5-formyl tetrahydrofolate-mediated enhancement of 5-fluoro-2′-deoxyuridine antitumor activity in vitro. Cancer Res. 50, 3262–3269 (1990).

    CAS  PubMed  Google Scholar 

  30. Park, J. G. et al. Enhancement of fluorinated pyrimidine-induced cytotoxicity by leucovorin in human colorectal carcinoma cell lines. J. Natl Cancer Inst. 80, 1560–1564 (1988). In vitro studies such as this one were the basis for the clinical evaluation of 5-FU/leucovorin combination therapy.

    CAS  PubMed  Google Scholar 

  31. Nadal, J. C., Van Groeningen, C. J., Pinedo, H. M. & Peters, G. J. In vivo potentiation of 5-fluorouracil by leucovorin in murine colon carcinoma. Biomed. Pharmacother. 42, 387–393 (1988).

    CAS  PubMed  Google Scholar 

  32. Wright, J. E. et al. Selective expansion of 5, 0-methylenetetrahydrofolate pools and modulation of 5-fluorouracil antitumor activity by leucovorin in vivo. Cancer Res. 49, 2592–2596 (1989).

    CAS  PubMed  Google Scholar 

  33. Dolnick, B. J. & Cheng, Y. C. Human thymidylate synthetase. II. Derivatives of pteroylmono- and -polyglutamates as substrates and inhibitors. J. Biol. Chem. 253, 3563–3567 (1978).

    CAS  PubMed  Google Scholar 

  34. Radparvar, S., Houghton, P. J. & Houghton, J. A. Effect of polyglutamylation of 5,10-methylenetetrahydrofolate on the binding of 5-fluoro-2′-deoxyuridylate to thymidylate synthase purified from a human colon adenocarcinoma xenograft. Biochem. Pharmacol. 38, 335–342 (1989).

    CAS  PubMed  Google Scholar 

  35. Advanced Colorectal Cancer Meta-Analysis Project. Modulation of fluorouracil by leucovorin in patients with advanced colorectal cancer: evidence in terms of response rate. J. Clin. Oncol. 10, 896–903 (1992). This large meta-analysis confirmed that combining 5-FU with leucovorin significantly increased tumour response rates in advanced colorectal cancer.

  36. Adjei, A. A. A review of the pharmacology and clinical activity of new chemotherapy agents for the treatment of colorectal cancer. Br. J. Clin. Pharmacol. 48, 265–277 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Douillard, J. Y. et al. Multicenter phase III study of uracil/tegafur and oral leucovorin versus fluorouracil and leucovorin in patients with previously untreated metastatic colorectal cancer. J. Clin. Oncol. 20, 3605–3616 (2002).

    CAS  PubMed  Google Scholar 

  38. Porter, D. J., Chestnut, W. G., Merrill, B. M. & Spector, T. Mechanism-based inactivation of dihydropyrimidine dehydrogenase by 5-ethynyluracil. J. Biol. Chem. 267, 5236–5242 (1992).

    CAS  PubMed  Google Scholar 

  39. Takechi, T. et al. Antitumor activity and low intestinal toxicity of S-1, a new formulation of oral tegafur, in experimental tumor models in rats. Cancer Chemother. Pharmacol. 39, 205–211 (1997).

    CAS  PubMed  Google Scholar 

  40. Spector, T., Cao, S., Rustum, Y. M., Harrington, J. A. & Porter, D. J. Attenuation of the antitumor activity of 5-fluorouracil by (R)-5-fluoro-5,6-dihydrouracil. Cancer Res. 55, 1239–1241 (1995).

    CAS  PubMed  Google Scholar 

  41. Miwa, M. et al. Design of a novel oral fluoropyrimidine carbamate, capecitabine, which generates 5-fluorouracil selectively in tumours by enzymes concentrated in human liver and cancer tissue. Eur. J. Cancer 34, 1274–1281 (1998).

    CAS  PubMed  Google Scholar 

  42. Cao, D., Russell, R. L., Zhang, D., Leffert, J. J. & Pizzorno, G. Uridine phosphorylase (−/−) murine embryonic stem cells clarify the key role of this enzyme in the regulation of the pyrimidine salvage pathway and in the activation of fluoropyrimidines. Cancer Res. 62, 2313–2317 (2002).

    CAS  PubMed  Google Scholar 

  43. Schuller, J. et al. Preferential activation of capecitabine in tumor following oral administration to colorectal cancer patients. Cancer Chemother. Pharmacol. 45, 291–297 (2000).

    CAS  PubMed  Google Scholar 

  44. Hoff, P. M. et al. Comparison of oral capecitabine versus intravenous fluorouracil plus leucovorin as first-line treatment in 605 patients with metastatic colorectal cancer: results of a randomized phase III study. J. Clin. Oncol. 19, 2282–2292 (2001).

    CAS  PubMed  Google Scholar 

  45. Gorlick, R. & Bertino, J. R. Clinical Pharmacology and Resistance to Dihydrofolate Reductase Inhibitors (ed. Jackman, A. L.) 37–57 (Humana Press, Totowa, New Jersey, 1999).

    Google Scholar 

  46. Benz, C., Tillis, T., Tattelman, E. & Cadman, E. Optimal schedule of methotrexate and 5-fluorouracil in human breast cancer. Cancer Res. 42, 2081–2086 (1982).

    CAS  PubMed  Google Scholar 

  47. Bertino, J. R., Mini, E. & Fernandes, D. J. Sequential methotrexate and 5-fluorouracil: mechanisms of synergy. Semin. Oncol. 10, 2–5 (1983).

    CAS  PubMed  Google Scholar 

  48. McSheehy, P. M., Prior, M. J. & Griffiths, J. R. Enhanced 5-fluorouracil cytotoxicity and increased 5-fluoronucleotides in the rat Walker carcinosarcoma following methotrexate pre-treatment: a 19F-MRS study in vivo. Br. J. Cancer 65, 369–375 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Sawyer, R. C., Stolfi, R. L., Martin, D. S. & Balis, M. E. Inhibition by methotrexate of the stable incorporation of 5-fluorouracil into murine bone marrow DNA. Biochem. Pharmacol. 38, 2305–2311 (1989).

    CAS  PubMed  Google Scholar 

  50. Cadman, E., Heimer, R. & Benz, C. The influence of methotrexate pretreatment on 5-fluorouracil metabolism in L1210 cells. J. Biol. Chem. 256, 1695–1704 (1981). This in vitro study showed that pre-treatment with methotrexate synergistically increased cell death in response to 5-FU.

    CAS  PubMed  Google Scholar 

  51. Leyland-Jones, B. & O'Dwyer, P. J. Biochemical modulation: application of laboratory models to the clinic. Cancer Treat. Rep. 70, 219–229 (1986).

    CAS  PubMed  Google Scholar 

  52. Meta-analysis of randomized trials testing the biochemical modulation of fluorouracil by methotrexate in metastatic colorectal cancer. Advanced Colorectal Cancer Meta-Analysis Project. J. Clin. Oncol. 12, 960–969 (1994). This meta-analysis indicated that combining 5-FU with methotrexate increased response rates in metastatic colorectal cancer.

  53. Houghton, J. A., Morton, C. L., Adkins, D. A. & Rahman, A. Locus of the interaction among 5-fluorouracil, leucovorin, and interferon-alpha 2a in colon carcinoma cells. Cancer Res. 53, 4243–4250 (1993).

    CAS  PubMed  Google Scholar 

  54. Eda, H. et al. Cytokines induce uridine phosphorylase in mouse colon 26 carcinoma cells and make the cells more susceptible to 5′-deoxy-5-fluorouridine. Jpn. J. Cancer Res. 84, 341–347 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Eda, H. et al. Cytokines induce thymidine phosphorylase expression in tumor cells and make them more susceptible to 5′-deoxy-5-fluorouridine. Cancer Chemother. Pharmacol. 32, 333–338 (1993).

    CAS  PubMed  Google Scholar 

  56. Chu, E., Koeller, D. M., Johnston, P. G., Zinn, S. & Allegra, C. J. Regulation of thymidylate synthase in human colon cancer cells treated with 5-fluorouracil and interferon-gamma. Mol. Pharmacol. 43, 527–533 (1993).

    CAS  PubMed  Google Scholar 

  57. Wadler, S., Lembersky, B., Atkins, M., Kirkwood, J. & Petrelli, N. Phase II trial of fluorouracil and recombinant interferon alfa-2a in patients with advanced colorectal carcinoma: an Eastern Cooperative Oncology Group study. J. Clin. Oncol. 9, 1806–1810 (1991).

    CAS  PubMed  Google Scholar 

  58. Grem, J. L. et al. Phase II study of fluorouracil, leucovorin, and interferon alfa-2a in metastatic colorectal carcinoma. J. Clin. Oncol. 11, 1737–1745 (1993).

    CAS  PubMed  Google Scholar 

  59. Wolmark, N. et al. Adjuvant 5-fluorouracil and leucovorin with or without interferon alfa-2a in colon carcinoma: National Surgical Adjuvant Breast and Bowel Project protocol C-05. J. Natl Cancer Inst. 90, 1810–1816 (1998). This study showed that adding interferon-α to adjuvant 5-FU/leucovorin chemotherapy did not significantly increase disease-free or overall survival of colorectal cancer patients.

    CAS  PubMed  Google Scholar 

  60. Seymour, M. T. et al. Randomized trial assessing the addition of interferon alpha-2a to fluorouracil and leucovorin in advanced colorectal cancer. Colorectal Cancer Working Party of the United Kingdom Medical Research Council. J. Clin. Oncol. 14, 2280–2288 (1996).

    CAS  PubMed  Google Scholar 

  61. Greco, F. A. et al. Phase III randomized study to compare interferon alfa-2a in combination with fluorouracil versus fluorouracil alone in patients with advanced colorectal cancer. J. Clin. Oncol. 14, 2674–2681 (1996).

    CAS  PubMed  Google Scholar 

  62. Johnston, P. G., Drake, J. C., Trepel, J. & Allegra, C. J. Immunological quantitation of thymidylate synthase using the monoclonal antibody TS 106 in 5-fluorouracil-sensitive and -resistant human cancer cell lines. Cancer Res. 52, 4306–4312 (1992).

    CAS  PubMed  Google Scholar 

  63. Copur, S., Aiba, K., Drake, J. C., Allegra, C. J. & Chu, E. Thymidylate synthase gene amplification in human colon cancer cell lines resistant to 5-fluorouracil. Biochem. Pharmacol. 49, 1419–1426 (1995).

    CAS  PubMed  Google Scholar 

  64. Lenz, H. J. et al. p53 point mutations and thymidylate synthase messenger RNA levels in disseminated colorectal cancer: an analysis of response and survival. Clin. Cancer Res. 4, 1243–1250 (1998).

    CAS  PubMed  Google Scholar 

  65. Johnston, P. G. et al. Thymidylate synthase gene and protein expression correlate and are associated with response to 5-fluorouracil in human colorectal and gastric tumors. Cancer Res. 55, 1407–1412 (1995). This study showed that TS mRNA expression can be used as a surrogate for TS protein expression in clinical studies. In addition, both TS mRNA and protein expression predicted response of colorectal and gastric tumours to 5-FU.

    CAS  PubMed  Google Scholar 

  66. Edler, D. et al. Immunohistochemical determination of thymidylate synthase in colorectal cancer: methodological studies. Eur. J. Cancer 33, 2278–2281 (1997).

    CAS  PubMed  Google Scholar 

  67. Marsh, S. & McLeod, H. L. Thymidylate synthase pharmacogenomics in colorectal cancer. Clin. Colorectal Cancer 1, 175–178 (2001).

    CAS  PubMed  Google Scholar 

  68. Horie, N., Aiba, H., Oguro, K., Hojo, H. & Takeishi, K. Functional analysis and DNA polymorphism of the tandemly repeated sequences in the 5′-terminal regulatory region of the human gene for thymidylate synthase. Cell Struct. Funct. 20, 191–197 (1995).

    CAS  PubMed  Google Scholar 

  69. Marsh, S., McKay, J. A., Cassidy, J. & McLeod, H. L. Polymorphism in the thymidylate synthase promoter enhancer region in colorectal cancer. Int. J. Oncol. 19, 383–386 (2001).

    CAS  PubMed  Google Scholar 

  70. Pullarkat, S. T. et al. Thymidylate synthase gene polymorphism determines response and toxicity of 5-FU chemotherapy. Pharmacogenomics J. 1, 65–70 (2001). This study showed that polymorphisms in the TS promoter region affected TS expression levels in vivo and were predictive of tumour response to 5-FU in patients.

    CAS  PubMed  Google Scholar 

  71. Kawakami, K., Omura, K., Kanehira, E. & Watanabe, Y. Polymorphic tandem repeats in the thymidylate synthase gene is associated with its protein expression in human gastrointestinal cancers. Anticancer Res. 19, 3249–3252 (1999).

    CAS  PubMed  Google Scholar 

  72. Swain, S. M. et al. Fluorouracil and high-dose leucovorin in previously treated patients with metastatic breast cancer. J. Clin. Oncol. 7, 890–899 (1989).

    CAS  PubMed  Google Scholar 

  73. Chu, E. et al. Identification of a thymidylate synthase ribonucleoprotein complex in human colon cancer cells. Mol. Cell. Biol. 14, 207–213 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Evrard, A., Cuq, P., Ciccolini, J., Vian, L. & Cano, J. P. Increased cytotoxicity and bystander effect of 5-fluorouracil and 5-deoxy-5-fluorouridine in human colorectal cancer cells transfected with thymidine phosphorylase. Br. J. Cancer 80, 1726–1733 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Metzger, R. et al. High basal level gene expression of thymidine phosphorylase (platelet-derived endothelial cell growth factor) in colorectal tumors is associated with nonresponse to 5-fluorouracil. Clin. Cancer Res. 4, 2371–2376 (1998).

    CAS  PubMed  Google Scholar 

  76. Takebayashi, Y. et al. Clinicopathologic and prognostic significance of an angiogenic factor, thymidine phosphorylase, in human colorectal carcinoma. J. Natl Cancer Inst. 88, 1110–1117 (1996).

    CAS  PubMed  Google Scholar 

  77. Johnson, M. R. et al. Life-threatening toxicity in a dihydropyrimidine dehydrogenase-deficient patient after treatment with topical 5-fluorouracil. Clin. Cancer Res. 5, 2006–2011 (1999).

    CAS  PubMed  Google Scholar 

  78. Johnson, M. R., Wang, K. & Diasio, R. B. Profound dihydropyrimidine dehydrogenase deficiency resulting from a novel compound heterozygote genotype. Clin. Cancer Res. 8, 768–774 (2002).

    CAS  PubMed  Google Scholar 

  79. Takebe, N. et al. Retroviral transduction of human dihydropyrimidine dehydrogenase cDNA confers resistance to 5-fluorouracil in murine hematopoietic progenitor cells and human CD34+-enriched peripheral blood progenitor cells. Cancer Gene Ther. 8, 966–973 (2001).

    CAS  PubMed  Google Scholar 

  80. Salonga, D. et al. Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase. Clin. Cancer Res. 6, 1322–1327 (2000). Shows that analysis of three predictive markers (TS, TP and DPD) markedly enhanced the ability to predict tumour response to 5-FU-based chemotherapy compared with using a single biomarker.

    CAS  PubMed  Google Scholar 

  81. Lane, D. P. Cancer. p53, guardian of the genome. Nature 358, 15–16 (1992).

    CAS  PubMed  Google Scholar 

  82. Dotto, G. P. p21(WAF1/Cip1): more than a break to the cell cycle? Biochim. Biophys. Acta 1471, M43–M56 (2000).

    CAS  Google Scholar 

  83. Zhan, Q., Chen, I. T., Antinore, M. J. & Fornace, A. J., Jr. Tumor suppressor p53 can participate in transcriptional induction of the GADD45 promoter in the absence of direct DNA binding. Mol. Cell. Biol. 18, 2768–2778 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Miyashita, T. et al. Tumor suppressor p53 is a regulator of Bcl-2 and Bax gene expression in vitro and in vivo. Oncogene 9, 1799–1805 (1994).

    CAS  PubMed  Google Scholar 

  85. Petak, I., Tillman, D. M. & Houghton, J. A. p53 dependence of Fas induction and acute apoptosis in response to 5-fluorouracil-leucovorin in human colon carcinoma cell lines. Clin. Cancer Res. 6, 4432–4441 (2000).

    CAS  PubMed  Google Scholar 

  86. Bunz, F. et al. Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J. Clin. Invest. 104, 263–269 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Longley, D. B. et al. The role of thymidylate synthase induction in modulating p53-regulated gene expression in response to 5-fluorouracil and antifolates. Cancer Res. 62, 2644–2649 (2002).

    CAS  PubMed  Google Scholar 

  88. Zhang, L., Yu, J., Park, B. H., Kinzler, K. W. & Vogelstein, B. Role of BAX in the apoptotic response to anticancer agents. Science 290, 989–992 (2000).

    CAS  PubMed  Google Scholar 

  89. Liang, J. T. et al. p53 overexpression predicts poor chemosensitivity to high-dose 5-fluorouracil plus leucovorin chemotherapy for stage IV colorectal cancers after palliative bowel resection. Int. J. Cancer 97, 451–457 (2002).

    CAS  PubMed  Google Scholar 

  90. Elsaleh, H. et al. p53 alteration and microsatellite instability have predictive value for survival benefit from chemotherapy in stage III colorectal carcinoma. Clin. Cancer Res. 7, 1343–1349 (2001).

    CAS  PubMed  Google Scholar 

  91. Ahnen, D. J. et al. Ki-ras mutation and p53 overexpression predict the clinical behavior of colorectal cancer: a Southwest Oncology Group study. Cancer Res. 58, 1149–1158 (1998). This clinical study found that patients with stage III colorectal cancer whose tumours overexpressed p53 did not benefit from adjuvant 5-FU-based chemotherapy, indicating that tumours with mutant TP53 are less responsive to 5-FU.

    CAS  PubMed  Google Scholar 

  92. Paradiso, A. et al. Thymidylate synthase and p53 primary tumour expression as predictive factors for advanced colorectal cancer patients. Br. J. Cancer 82, 560–567 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Sjogren, S. et al. The p53 gene in breast cancer: prognostic value of complementary DNA sequencing versus immunohistochemistry. J. Natl Cancer Inst. 88, 173–182 (1996).

    CAS  PubMed  Google Scholar 

  94. Liu, B. et al. Analysis of mismatch repair genes in hereditary non-polyposis colorectal cancer patients. Nature Med. 2, 169–174 (1996).

    CAS  PubMed  Google Scholar 

  95. Claij, N. & te Riele, H. Microsatellite instability in human cancer: a prognostic marker for chemotherapy? Exp. Cell Res. 246, 1–10 (1999).

    CAS  PubMed  Google Scholar 

  96. Jacob, S. & Praz, F. DNA mismatch repair defects: role in colorectal carcinogenesis. Biochimie 84, 27–47 (2002).

    CAS  PubMed  Google Scholar 

  97. Meyers, M., Wagner, M. W., Hwang, H. S., Kinsella, T. J. & Boothman, D. A. Role of the hMLH1 DNA mismatch repair protein in fluoropyrimidine-mediated cell death and cell cycle responses. Cancer Res. 61, 5193–5201 (2001).

    CAS  PubMed  Google Scholar 

  98. Zembutsu, H. et al. Genome-wide cDNA microarray screening to correlate gene expression profiles with sensitivity of 85 human cancer xenografts to anticancer drugs. Cancer Res. 62, 518–527 (2002). One of the first studies to use DNA microarray profiling to identify subsets of genes that have expression levels that correlate with drug sensitivity.

    CAS  PubMed  Google Scholar 

  99. Scherf, U. et al. A gene expression database for the molecular pharmacology of cancer. Nature Genet. 24, 236–244 (2000).

    CAS  PubMed  Google Scholar 

  100. Kihara, C. et al. Prediction of sensitivity of esophageal tumors to adjuvant chemotherapy by cDNA microarray analysis of gene-expression profiles. Cancer Res. 61, 6474–6479 (2001).

    CAS  PubMed  Google Scholar 

  101. Maxwell, P. J. et al. Identification of 5-fluorouracil-inducible target genes using cDNA microarray profiling. Cancer Res. (in the press).

  102. Nagata, S. Fas ligand-induced apoptosis. Annu. Rev. Genet. 33, 29–55 (1999).

    CAS  Google Scholar 

  103. Houghton, J. A., Harwood, F. G. & Tillman, D. M. Thymineless death in colon carcinoma cells is mediated via fas signaling. Proc. Natl Acad. Sci. USA 94, 8144–8149 (1997).

    CAS  PubMed  Google Scholar 

  104. Houghton, J. A., Harwood, F. G., Gibson, A. A. & Tillman, D. M. The Fas signaling pathway is functional in colon carcinoma cells and induces apoptosis. Clin. Cancer Res. 3, 2205–2209 (1997).

    CAS  PubMed  Google Scholar 

  105. Wang, W., Marsh, S., Cassidy, J. & McLeod, H. L. Pharmacogenomic dissection of resistance to thymidylate synthase inhibitors. Cancer Res. 61, 5505–5510 (2001).

    CAS  PubMed  Google Scholar 

  106. Raymond, E. Oxaliplatin: mechanism of action and antineoplastic activity. Semin. Oncol. 25, 4–12 (1998).

    CAS  PubMed  Google Scholar 

  107. Voigt, W. et al. Topoisomerase-I inhibitor SN-38 can induce DNA damage and chromosomal aberrations independent from DNA synthesis. Anticancer Res. 18, 3499–3505 (1998).

    CAS  PubMed  Google Scholar 

  108. Cunningham, D. et al. Randomised trial of irinotecan plus supportive care versus supportive care alone after fluorouracil failure for patients with metastatic colorectal cancer. Lancet 352, 1413–1418 (1998).

    CAS  PubMed  Google Scholar 

  109. Saltz, L. B. et al. Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan Study Group. N. Engl. J. Med. 343, 905–914 (2000).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Cancer Research UK; the Research and Development Office, Department of Health and Social Services, Northern Ireland; and the Ulster Cancer Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick G. Johnston.

Related links

Related links

DATABASES

Cancer.gov

breast cancer

colorectal cancer

head and neck cancer

LocusLink

annexin II

BAX

BCL2

caspase-8

CDKN1A

chaperonin-10

DHFR

DPD

FADD

FAS

FASL

folylpolyglutamate synthetase

GADD45α

IFN-α

MAT8

MDR3

MLH1

MSH2

MSH6

p53

SSAT

thymosin-β-10

TP

TS

UDG

UP

OMIM

hereditary non-polyposis colon cancer

Glossary

FLUOROPYRIMIDINES

Antimetabolite drugs such as 5-fluorouracil that are fluorinated derivatives of pyrimidines.

IRINOTECAN

An anticancer drug that inhibits DNA topoisomerase I. It is used in the treatment of advanced colorectal cancer.

OXALIPLATIN

A platinum-based DNA-damaging anticancer drug that is used in the treatment of advanced colorectal cancer.

DNA MICROARRAY

A technique that allows global changes in gene expression to be assessed.

PREDICTIVE BIOMARKERS

Molecular markers that predict tumour sensitivity to chemotherapy.

FOLATES

Family of essential vitamins that act as cofactors in one-carbon transfer reactions.

TERNARY COMPLEX

A stable complex that is formed between 5-fluorouracil, thymidylate synthase and 5,10-methylene tetrahydrofolate, and that blocks synthesis of thymidylate by the enzyme.

rRNA

(Ribosomal RNA). The RNA component of ribosomes, which translate mRNA into protein.

tRNA

(Transfer RNA). tRNAs bond with amino acids and transfer them to the ribosomes, where proteins are assembled according to the genetic code that is carried by mRNA.

snRNA

(Small nuclear RNA). Small nuclear RNAs have key roles in the splicing of pre-mRNA into mature mRNA.

mRNA

(Messenger RNA). RNA that serves as a template for protein synthesis.

POLYADENYLATION OF mRNA

Mature mRNAs have a homopolymer of adenosine residues (poly(A) tails) at their 3′-termini, which are important in regulating their stability and translation.

POLYGLUTAMATION

Addition of glutamate residues to folates by folylpolyglutamate synthase (FPGS), increasing their intracellular retention. Most folate-dependent enzymes have a higher affinity for the polyglutamate forms of their folate cofactors.

POLYMORPHIC

Occurrence of variant DNA sequences in a population at frequencies that are too high to be due to random mutations.

MICROSATELLITE INSTABILITY

Microsatellite instability refers to variations in the numbers of repetitive di-, tri- and tetranucleotide repeats (called microsatellites) found in DNA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Longley, D., Harkin, D. & Johnston, P. 5-Fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3, 330–338 (2003). https://doi.org/10.1038/nrc1074

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1074

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing