Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A mouse model of intracerebral hemorrhage using autologous blood infusion

Abstract

The development of controllable and reproducible animal models of intracerebral hemorrhage (ICH) is essential for the systematic study of the pathophysiology and treatment of hemorrhagic stroke. In recent years, we have used a modified version of a murine ICH model to inject blood into mouse basal ganglia. According to our protocol, autologous blood is stereotactically infused in two stages into the right striatum to mimic the natural events of hemorrhagic stroke. Following ICH induction, animals demonstrate reproducible hematomas, brain edema formation and marked neurological deficits. Our technique has proven to be a reliable and reproducible means of creating ICH in mice in a number of acute and chronic studies. We believe that our model will serve as an ideal paradigm for investigating the complex pathophysiology of hemorrhagic stroke. The protocol for establishing this model takes about 2 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A picture representing a setup of the stereotactic apparatus and other devices used in the ICH model.
Figure 2: A mouse mounted in the stereotactic frame.
Figure 3: Representative landmarks of mouse skull.
Figure 4: Representative histological photomicrographs of low- (a) and high- (b) magnification, hematoxylin and eosin (H&E)-stained brain section obtained 3 d after injection of 30 μl of autologous blood into the right striatum of C57BL/6J mouse.
Figure 5: Typical results.

Similar content being viewed by others

References

  1. Broderick, J.P. et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke 30, 905–915 (1999).

    Article  CAS  Google Scholar 

  2. Dennis, M.S. et al. Long-term survival after first-ever stroke: the Oxfordshire Community Stroke Project. Stroke 24, 796–800 (1993).

    Article  CAS  Google Scholar 

  3. Anderson, C.S., Chakera, T.M., Stewart-Wynne, E.G. & Jamrozik, K.D. Spectrum of primary intracerebral haemorrhage in Perth, Western Australia, 1989–90: incidence and outcome. J. Neurol. Neurosurg. Psychiatry 57, 936–940 (1994).

    Article  CAS  Google Scholar 

  4. Gong, C., Hoff, J.T. & Keep, R.F. Acute inflammatory reaction following experimental intracerebral hemorrhage in rat. Brain Res. 871, 57–65 (2000).

    Article  CAS  Google Scholar 

  5. Hua, Y., Xi, G., Keep, R.F. & Hoff, J.T. Complement activation in the brain after experimental intracerebral hemorrhage. J. Neurosurg. 92, 1016–1022 (2000).

    Article  CAS  Google Scholar 

  6. Wagner, K.R., Sharp, F.R., Ardizzone, T.D., Lu, A. & Clark, J.F. Heme and iron metabolism: role in cerebral hemorrhage. J. Cereb. Blood Flow Metab. 23, 629–652 (2003).

    Article  CAS  Google Scholar 

  7. Wang, J., Rogove, A.D., Tsirka, A.E. & Tsirka, S.E. Protective role of tuftsin fragment 1–3 in an animal model of intracerebral hemorrhage. Ann. Neurol. 54, 655–664 (2003).

    Article  CAS  Google Scholar 

  8. Xi, G. et al. Intracerebral hemorrhage: pathophysiology and therapy. Neurocrit. Care 1, 5–18 (2004).

    Article  Google Scholar 

  9. Andaluz, N., Zuccarello, M. & Wagner, K.R. Experimental animal models of intracerebral hemorrhage. Neurosurg. Clin. N. Am. 13, 385–393 (2002).

    Article  Google Scholar 

  10. Kaufman, H. & Schochet, S. Pathology, pathophysiology, and modeling. in Intracerebral Hematomas: Etiology, Pathophysiology, Clinical Presentation, and Treatment (ed. Kaufman, H.) 13–20 (Raven Press, New York, 1992).

    Google Scholar 

  11. Mun-Bryce, S., Wilkerson, A.C., Papuashvili, N. & Okada, Y.C. Recurring episodes of spreading depression are spontaneously elicited by an intracerebral hemorrhage in the swine. Brain Res. 888, 248–255 (2001).

    Article  CAS  Google Scholar 

  12. Del Bigio, M.R., Yan, H.J., Campbell, T.M. & Peeling, J. Effect of fucoidan treatment on collagenase-induced intracerebral hemorrhage in rats. Neurol. Res. 21, 415–419 (1999).

    Article  CAS  Google Scholar 

  13. Enzmann, D.R., Britt, R.H., Lyons, B.E., Buxton, J.L. & Wilson, D.A. Natural history of experimental intracerebral hemorrhage: sonography, computed tomography and neuropathology. AJNR Am. J. Neuroradiol. 2, 517–526 (1981).

    CAS  PubMed  Google Scholar 

  14. Rosenberg, G.A., Estrada, E., Kelley, R.O. & Kornfeld, M. Bacterial collagenase disrupts extracellular matrix and opens blood–brain barrier in rat. Neurosci. Lett. 160, 117–119 (1993).

    Article  CAS  Google Scholar 

  15. Rosenberg, G.A., Mun-Bryce, S., Wesley, M. & Kornfeld, M. Collagenase-induced intracerebral hemorrhage in rats. Stroke 21, 801–807 (1990).

    Article  CAS  Google Scholar 

  16. Choudhri, T.F., Hoh, B.L., Solomon, R.A., Connolly, E.S. Jr. & Pinsky, D.J. Use of a spectrophotometric hemoglobin assay to objectively quantify intracerebral hemorrhage in mice. Stroke 28, 2296–2302 (1997).

    Article  CAS  Google Scholar 

  17. Lyden, P.D., Jackson-Friedman, C. & Lonzo-Doktor, L. Medical therapy for intracerebral hematoma with the gamma-aminobutyric acid-A agonist muscimol. Stroke 28, 387–391 (1997).

    Article  CAS  Google Scholar 

  18. Del Bigio, M.R., Yan, H.J., Buist, R. & Peeling, J. Experimental intracerebral hemorrhage in rats. Magnetic resonance imaging and histopathological correlates. Stroke 27, 2312–2319; discussion 2319–2320 (1996).

    Article  CAS  Google Scholar 

  19. Xue, M. & Del Bigio, M.R. Intracerebral injection of autologous whole blood in rats: time course of inflammation and cell death. Neurosci. Lett. 283, 230–232 (2000).

    Article  CAS  Google Scholar 

  20. Xue, M. & Del Bigio, M.R. Comparison of brain cell death and inflammatory reaction in three models of intracerebral hemorrhage in adult rats. J. Stroke Cerebrovasc. Dis. 12, 152–159 (2003).

    Article  Google Scholar 

  21. Belayev, L. et al. Experimental intracerebral hemorrhage in the mouse: histological, behavioral, and hemodynamic characterization of a double-injection model. Stroke 34, 2221–2227 (2003).

    Article  Google Scholar 

  22. Nakamura, T. et al. Intracerebral hemorrhage in mice: model characterization and application for genetically modified mice. J. Cereb. Blood Flow Metab. 24, 487–494 (2004).

    Article  Google Scholar 

  23. Xi, G., Hua, Y., Keep, R.F., Younger, J.G. & Hoff, J.T. Systemic complement depletion diminishes perihematomal brain edema in rats. Stroke 32, 162–167 (2001).

    Article  CAS  Google Scholar 

  24. Deinsberger, W., Vogel, J., Kuschinsky, W., Auer, L.M. & Boker, D.K. Experimental intracerebral hemorrhage: description of a double injection model in rats. Neurol. Res. 18, 475–477 (1996).

    Article  CAS  Google Scholar 

  25. Yang, G.Y., Betz, A.L., Chenevert, T.L., Brunberg, J.A. & Hoff, J.T. Experimental intracerebral hemorrhage: relationship between brain edema, blood flow, and blood–brain barrier permeability in rats. J. Neurosurg. 81, 93–102 (1994).

    Article  CAS  Google Scholar 

  26. Hickenbottom, S.L., Grotta, J.C., Strong, R., Denner, L.A. & Aronowski, J. Nuclear factor-kappaB and cell death after experimental intracerebral hemorrhage in rats. Stroke 30, 2472–2477, discussion 2477–2478 (1999).

    Article  CAS  Google Scholar 

  27. Felberg, R.A. et al. Cell death in experimental intracerebral hemorrhage: the 'black hole' model of hemorrhagic damage. Ann. Neurol. 51, 517–524 (2002).

    Article  Google Scholar 

  28. Rynkowski, M.A. et al. C3a-receptor antagonist attenuates brain injury from intracerebral hemorrhage in mice. Stroke 39(2) (2008, in the press).

  29. Xi, G. et al. Role of blood clot formation on early edema development after experimental intracerebral hemorrhage. Stroke 29, 2580–2586 (1998).

    Article  CAS  Google Scholar 

  30. Connolly, E.S. Jr., Winfree, C.J., Stern, D.M., Solomon, R.A. & Pinsky, D.J. Procedural and strain-related variables significantly affect outcome in a murine model of focal cerebral ischemia. Neurosurgery 38, 523–531, discussion 532 (1996).

    PubMed  Google Scholar 

  31. Xi, G., Keep, R.F. & Hoff, J.T. Erythrocytes and delayed brain edema formation following intracerebral hemorrhage in rats. J. Neurosurg. 89, 991–996 (1998).

    Article  CAS  Google Scholar 

  32. Tomita, H., Ito, U., Ohno, K. & Hirakawa, K. Chronological changes in brain edema induced by experimental intracerebral hematoma in cats. Acta Neurochir. Suppl. (Wien) 60, 558–560 (1994).

    CAS  Google Scholar 

  33. Bederson, J.B. et al. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke 17, 472–476 (1986).

    Article  CAS  Google Scholar 

  34. Bouet, V. et al. Sensorimotor and cognitive deficits after transient middle cerebral artery occlusion in the mouse. Exp. Neurol. 203, 555–567 (2007).

    Article  Google Scholar 

  35. Clark, W.M., Lessov, N.S., Dixon, M.P. & Eckenstein, F. Monofilament intraluminal middle cerebral artery occlusion in the mouse. Neurol. Res. 19, 641–648 (1997).

    Article  CAS  Google Scholar 

  36. Hua, Y. et al. Behavioral tests after intracerebral hemorrhage in the rat. Stroke 33, 2478–2484 (2002).

    Article  Google Scholar 

  37. De Ryck, M., Van Reempts, J., Borgers, M., Wauquier, A. & Janssen, P.A. Photochemical stroke model: flunarizine prevents sensorimotor deficits after neocortical infarcts in rats. Stroke 20, 1383–1390 (1989).

    Article  CAS  Google Scholar 

  38. Schallert, T., Fleming, S.M., Leasure, J.L., Tillerson, J.L. & Bland, S.T. CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology 39, 777–787 (2000).

    Article  CAS  Google Scholar 

  39. Li, X. et al. Chronic behavioral testing after focal ischemia in the mouse: functional recovery and the effects of gender. Exp. Neurol. 187, 94–104 (2004).

    Article  Google Scholar 

  40. Yu, G.L. et al. Montelukast, a cysteinyl leukotriene receptor-1 antagonist, dose- and time-dependently protects against focal cerebral ischemia in mice. Pharmacology 73, 31–40 (2005).

    Article  CAS  Google Scholar 

  41. Zhang, L. et al. A test for detecting long-term sensorimotor dysfunction in the mouse after focal cerebral ischemia. J. Neurosci. Methods 117, 207–214 (2002).

    Article  Google Scholar 

  42. Paxinos, G. & Franklin, K.B.J. The Mouse Brain In Stereotaxic Coordinates (Elsevier Academic Press, Amsterdam and Boston, 2004).

    Google Scholar 

  43. Wahlsten, D., Hudspeth, W.J. & Bernhardt, K. Implications of genetic variation in mouse brain structure for electrode placement by stereotaxic surgery. J. Comp. Neurol. 162, 519–531 (1975).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. M.A.R. was supported by The Kosciuszko Foundation Postdoctoral Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo J Komotar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rynkowski, M., Kim, G., Komotar, R. et al. A mouse model of intracerebral hemorrhage using autologous blood infusion. Nat Protoc 3, 122–128 (2008). https://doi.org/10.1038/nprot.2007.513

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.513

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing