Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observation of unconventional edge states in ‘photonic graphene’

Abstract

Graphene, a two-dimensional honeycomb lattice of carbon atoms, has been attracting much interest in recent years. Electrons therein behave as massless relativistic particles, giving rise to strikingly unconventional phenomena. Graphene edge states are essential for understanding the electronic properties of this material. However, the coarse or impure nature of the graphene edges hampers the ability to directly probe the edge states. Perhaps the best example is given by the edge states on the bearded edge that have never been observed—because such an edge is unstable in graphene. Here, we use the optical equivalent of graphene—a photonic honeycomb lattice—to study the edge states and their properties. We directly image the edge states on both the zigzag and bearded edges of this photonic graphene, measure their dispersion properties, and most importantly, find a new type of edge state: one residing on the bearded edge that has never been predicted or observed. This edge state lies near the Van Hove singularity in the edge band structure and can be classified as a Tamm-like state lacking any surface defect. The mechanism underlying its formation may counterintuitively appear in other crystalline systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Physical structure and band structure of photonic honeycomb lattices.
Figure 2: Experimental demonstration of an edge state at the zigzag edge of an optically induced honeycomb lattice.
Figure 3: Momentum-resolved measurements of edge states in a photonic honeycomb lattice.
Figure 4: Calculating the new edge state.

Similar content being viewed by others

References

  1. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  CAS  Google Scholar 

  2. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  CAS  Google Scholar 

  3. Beenakker, C. W. J. Colloquium: Andreev reflection and Klein tunneling in graphene. Rev. Mod. Phys. 80, 1337–1354 (2008).

    Article  CAS  Google Scholar 

  4. Zhang, Y., Tan, Y-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    Article  CAS  Google Scholar 

  5. Guinea, F., Katsnelson, M. I. & Geim, A. K. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nature Phys. 6, 30–33 (2010).

    Article  CAS  Google Scholar 

  6. Montambaux, G., Piéchon, F., Fuchs, J-N. & Goerbig, M. O. Merging of Dirac points in a two-dimensional crystal. Phys. Rev. B 80, 153412 (2009).

    Article  Google Scholar 

  7. Fefferman, C. & Weinstein, M. Honeycomb lattice potentials and Dirac points. J. Am. Math. Soc. 25, 1169–1220 (2012).

    Article  Google Scholar 

  8. Tarruell, L., Greif, D., Uehlinger, T., Jotzu, G. & Esslinger, T. Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice. Nature 483, 302–305 (2012).

    Article  CAS  Google Scholar 

  9. Gomes, K. K., Mar, W., Ko, W., Guinea, F. & Manoharan, H. C. Designer Dirac fermions and topological phases in molecular graphene. Nature 483, 306–310 (2012).

    Article  CAS  Google Scholar 

  10. Wertz, E. et al. Spontaneous formation and optical manipulation of extended polariton condensates. Nature Phys. 6, 860–864 (2010).

    Article  CAS  Google Scholar 

  11. Goldman, N., Beugnon, J. & Gerbier, F. Detecting chiral edge states in the hofstadter optical lattice. Phys. Rev. Lett. 108, 255303 (2012).

    Article  Google Scholar 

  12. Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

    Article  Google Scholar 

  13. Kuhl, U. et al. Dirac point and edge states in a microwave realization of tight-binding graphene-like structures. Phys. Rev. B 82, 094308 (2010).

    Article  Google Scholar 

  14. Bellec, M., Kuhl, U., Montambaux, G. & Mortessagne, F. Topological transition of Dirac points in a microwave experiment. Phys. Rev. Lett. 110, 033902 (2013).

    Article  Google Scholar 

  15. Peleg, O. et al. Conical diffraction and gap solitons in honeycomb photonic lattices. Phys. Rev. Lett. 98, 103901 (2007).

    Article  Google Scholar 

  16. Sepkhanov, R. A., Bazaliy, Y. B. & Beenakker, C. W. J. Extremal transmission at the Dirac point of a photonic band structure. Phys. Rev. A 75, 063813 (2007).

    Article  Google Scholar 

  17. Bahat-Treidel, O., Peleg, O. & Segev, M. Symmetry breaking in honeycomb photonic lattices. Opt. Lett. 33, 2251–2253 (2008).

    Article  Google Scholar 

  18. Polini, M., Guinea, F., Lewenstein, M., Manoharan, H. C. & Pellegrini, V. Artificial honeycomb lattices for electrons, atoms and photons. Nature Nanotech. 8, 625–633 (2013).

    Article  CAS  Google Scholar 

  19. Bahat-Treidel, O. et al. Klein tunneling in deformed honeycomb lattices. Phys. Rev. Lett. 104, 063901 (2010).

    Article  Google Scholar 

  20. Ablowitz, M. J., Nixon, S. D. & Zhu, Y. Conical diffraction in honeycomb lattices. Phys. Rev. A 79, 053830 (2009).

    Article  Google Scholar 

  21. Bartal, G. et al. Brillouin zone spectroscopy of nonlinear photonic lattices. Phys. Rev. Lett. 94, 163902 (2005).

    Article  Google Scholar 

  22. Eisenberg, H. S., Silberberg, Y., Morandotti, R., Boyd, A. R. & Aitchison, J. S. Discrete spatial optical solitons in waveguide arrays. Phys. Rev. Lett. 81, 3383–3386 (1998).

    Article  CAS  Google Scholar 

  23. Fujita, M., Wakabayashi, K., Nakada, K. & Kusakabe, K. Peculiar localized state at zigzag graphite edge. J. Phys. Soc. Jpn 65, 1920–1923 (1996).

    Article  CAS  Google Scholar 

  24. Özyilmaz, B. et al. Electronic transport and quantum Hall effect in bipolar graphene p–n–p junctions. Phys. Rev. Lett. 99, 166804 (2007).

    Article  Google Scholar 

  25. Ritter, K. A. & Lyding, J. W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nature Mater. 8, 235–242 (2009).

    Article  CAS  Google Scholar 

  26. Yao, W., Yang, S. A. & Niu, Q. Edge states in graphene: From gapped flat-band to gapless chiral modes. Phys. Rev. Lett. 102, 096801 (2009).

    Article  Google Scholar 

  27. Kohmoto, M. & Hasegawa, Y. Zero modes and edge states of the honeycomb lattice. Phys. Rev. B 76, 205402 (2007).

    Article  Google Scholar 

  28. Kobayashi, Y., Fukui, K., Enoki, T., Kusakabe, K. & Kaburagi, Y. Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy. Phys. Rev. B 71, 193406 (2005).

    Article  Google Scholar 

  29. Tao, C. et al. Spatially resolving edge states of chiral graphene nanoribbons. Nature Phys. 7, 616–620 (2011).

    Article  CAS  Google Scholar 

  30. Klein, D. J. Graphitic polymer strips with edge states. Chem. Phys. Lett. 217, 261–265 (1994).

    Article  Google Scholar 

  31. Efremidis, N. K., Sears, S., Christodoulides, D. N., Fleischer, J. W. & Segev, M. Discrete solitons in photorefractive optically induced photonic lattices. Phys. Rev. E 66, 046602 (2002).

    Article  Google Scholar 

  32. Szameit, A. et al. Discrete nonlinear localization in femtosecond laser written waveguides in fused silica. Opt. Express 13, 10552–10557 (2005).

    Article  CAS  Google Scholar 

  33. Tamm, I. E. On the possible bound states of electrons on a crystal surface. Phys. Z. Sowjetunion 1, 733–735 (1932).

    CAS  Google Scholar 

  34. Shockley, W. On the surface states associated with a periodic potential. Phys. Rev. 56, 317–323 (1939).

    Article  CAS  Google Scholar 

  35. Lederer, F. et al. Discrete solitons in optics. Phys. Rep. 463, 1–126 (2008).

    Article  Google Scholar 

  36. Fleischer, J. W., Segev, M., Efremidis, N. K. & Christodoulides, D. N. Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature 422, 147–150 (2003).

    Article  CAS  Google Scholar 

  37. Malkova, N., Hromada, I., Wang, X., Bryant, G. & Chen, Z. Observation of optical Shockley-like surface states in photonic superlattices. Opt. Lett. 34, 1633–1635 (2009).

    Article  CAS  Google Scholar 

  38. Garanovich, I. L., Sukhorukov, A. A. & Kivshar, Y. S. Defect free surface state in modulated photonic lattices. Phys. Rev. Lett. 100, 203904 (2008).

    Article  Google Scholar 

  39. Szameit, A. et al. Observation of defect-free surface modes in optical waveguide arrays. Phys. Rev. Lett. 101, 203902 (2008).

    Article  Google Scholar 

  40. Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    Article  CAS  Google Scholar 

  41. Zak, J. Berry’s phase for energy bands in solids. Phys. Rev. Lett. 62, 2747–2750 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Technion team is part of the Israeli Center of Research Excellence ‘Circle of Light’ supported by the I-CORE Program of the Planning and Budgeting Committee and The Israel Science Foundation. M.C.R. is grateful to the Azrieli foundation for the Azrieli fellowship. This research was financially supported by an Advanced Grant from the European Research Council; the Israel Science Foundation; the USA-Israel Binational Science Foundation; the German Ministry of Education and Science (ZIK 03Z1HN31); the 973 Programs (2013CB328702, 2013CB632703) and the Program for Changjiang Scholars and Innovative Research Teams in China; and by the NSF and AFOSR in the USA.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed significantly to this work.

Corresponding author

Correspondence to Mordechai Segev.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 628 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plotnik, Y., Rechtsman, M., Song, D. et al. Observation of unconventional edge states in ‘photonic graphene’. Nature Mater 13, 57–62 (2014). https://doi.org/10.1038/nmat3783

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3783

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing