Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transformation optics and metamaterials

Abstract

Underpinned by the advent of metamaterials, transformation optics offers great versatility for controlling electromagnetic waves to create materials with specially designed properties. Here we review the potential of transformation optics to create functionalities in which the optical properties can be designed almost at will. This approach can be used to engineer various optical illusion effects, such as the invisibility cloak.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The folded geometry.
Figure 2: The coordinate transformations that give NIMs.
Figure 3: Complementary media external cloak.
Figure 4: Illusion optics.
Figure 5: A field concentrator and a field rotator.

Similar content being viewed by others

Andrew Forbes, Michael de Oliveira & Mark R. Dennis

References

  1. Leonhardt, U. Optical conformal mapping. Science 312, 1777–1780 (2006).

    CAS  Google Scholar 

  2. Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).

    CAS  Google Scholar 

  3. Ramo, S., Whinnery, J. R. & Van Duzer, T. Fields and Waves in Communication Electronics 3rd edn, Ch. 7 (Wiley, 1994).

    Google Scholar 

  4. Post, E. G. Formal Structure of Electromagnetics: General Covariance and Electromagnetics (Interscience Publishers, 1962).

    Google Scholar 

  5. Lax, M. & Nelson, D. F. Maxwell equations in material form. Phys. Rev. B 13, 1777–1784 (1976).

    Google Scholar 

  6. Schurig, D., Pendry, J. B. & Smith, D. R. Calculation of material properties and ray tracing in transformation media. Opt. Express 14, 9794–9804 (2006).

    CAS  Google Scholar 

  7. Leonhardt, U. & Philbin, T. G. General relativity in electrical engineering. New J. Phys. 8, 247 (2006).

    Google Scholar 

  8. Milton, G. W., Briane, M. & Willis, J. R. On cloaking for elasticity and physical equations with a transformation invariant form. New J. Phys. 8, 248 (2006).

    Google Scholar 

  9. Shalaev, V. M. Transforming light. Science 322, 384–386 (2008).

    CAS  Google Scholar 

  10. Leonhardt, U. & Philbin, T. G. Transformation optics and the geometry of light. Prog. Opt. 53, 69–152 (2009).

    Google Scholar 

  11. Dolin, L. S. On a possibility of comparing three-dimensional electromagnetic systems with inhomogeneous filling. Izv. Vuz. Radiofiz. 4, 964–967 (1961).

    Google Scholar 

  12. Pendry, J. B. et al. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773–4776 (1996).

    CAS  Google Scholar 

  13. Pendry, J. B. et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory 47, 2075–2084 (1999).

    Google Scholar 

  14. Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).

    Article  CAS  Google Scholar 

  15. Smith, D. R., Pendry, J. B. & Wiltshire, M. C. K. Metamaterials and negative refractive index. Science 305, 788–792 (2004).

    CAS  Google Scholar 

  16. Soukoulis, C. M., Linden, S. & Wegener, M. Negative refractive index at optical wavelengths. Science 315, 47–49 (2007).

    CAS  Google Scholar 

  17. Lezec, H. J., Dionne, J. A. & Atwater, H. A. Negative refraction at visible frequencies. Science 316, 430–432 (2007).

    CAS  Google Scholar 

  18. Yao, J. et al. Optical negative refraction in bulk metamaterials of nanowires. Science 321, 930 (2008).

    CAS  Google Scholar 

  19. Valentine, J. et al. Three-dimensional optical metamaterial with a negative refractive index. Nature 455, 376–379 (2008).

    CAS  Google Scholar 

  20. Kerker, M. Invisible bodies. J. Opt. Soc. Am. 65, 376–379 (1975).

    Google Scholar 

  21. Nicorovici, N. A., McPhedran, R. C. & Milton, G. W. Optical and dielectric properties of partially resonant composites. Phys. Rev. B 49, 8479–8482 (1994).

    CAS  Google Scholar 

  22. Milton, G. W. & Nicorovici, N-A. P. On the cloaking effects associated with anomalous localized resonance. Proc. R. Soc. Lon. Ser.-A 462, 3027–3059 (2006).

    Google Scholar 

  23. Alù, A. & Engheta, N. Achieving transparency with plasmonic and metamaterial coatings. Phys. Rev. E 72, 016623 (2005).

    Google Scholar 

  24. Greenleaf, A., Lassas, M. & Uhlmann, G. On non-uniqueness for Calderon's inverse problem. Math. Res. Lett. 10, 685–693 (2003).

    Google Scholar 

  25. Greenleaf, A., Lassas, M. & Uhlmann, G. Anisotropic conductivities that cannot be detected by EIT. Physiol. Meas. 24, 413–419 (2003).

    Google Scholar 

  26. Cummer, S. A. et al. Full-wave simulations of electromagnetic cloaking structures. Phys. Rev. E 74, 036621 (2006).

    Google Scholar 

  27. Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006).

    CAS  Google Scholar 

  28. Chen, H. S. et al. Electromagnetic wave interactions with a metamaterial cloak. Phys. Rev. Lett. 99, 063903 (2007).

    Google Scholar 

  29. Ruan, Z. C. et al. Ideal cylindrical cloak: perfect but sensitive to tiny perturbations. Phys. Rev. Lett. 99, 113903 (2007).

    Google Scholar 

  30. Yan, M., Ruan, Z. & Qiu, M. Cylindrical invisibility cloak with simplified material parameters is inherently visible. Phys. Rev. Lett. 99, 233901 (2007).

    Google Scholar 

  31. Liang, Z. X. et al. The physical picture and the essential elements of the dynamical process for dispersive cloaking structures. Appl. Phys. Lett. 92, 131118 (2008).

    Google Scholar 

  32. Chen, H. Y. & Chan, C. T. Time delays and energy transport velocities in three dimensional ideal cloaking devices. J. Appl. Phys. 104, 033113 (2008).

    Google Scholar 

  33. Leonhardt, U. Notes on conformal invisibility devices. New J. Phys. 8, 118 (2006).

    Google Scholar 

  34. Cai, W. S. et al. Optical cloaking with metamaterials. Nature Photon. 1, 224–227 (2007).

    CAS  Google Scholar 

  35. Cai, W. S. et al. Nonmagnetic cloak with minimized scattering. Appl. Phys. Lett. 91, 111105 (2007).

    Google Scholar 

  36. Wood, B. & Pendry, J. B. Metamaterials at zero frequency. J. Phys. Condens. Matter 19, 076208 (2007).

    CAS  Google Scholar 

  37. Magnus, F. et al. A d.c. magnetic metamaterial. Nature Mater. 7, 295–297 (2008).

    CAS  Google Scholar 

  38. Yan, W. et al. Coordinate transformations make perfect invisibility cloaks with arbitrary shape. New J. Phys. 10, 043040 (2008).

    Google Scholar 

  39. Jiang, W. X. et al. Arbitrarily elliptical–cylindrical invisible cloaking. J. Phys. D 41, 085504 (2008).

    Google Scholar 

  40. Kwon, D.-H. & Werner, D. H. Two-dimensional eccentric elliptic electromagnetic cloaks. Appl. Phys. Lett. 92, 013505 (2008).

    Google Scholar 

  41. Nicolet, A., Zolla, F. & Guenneau, S. Electromagnetic analysis of cylindrical cloaks of an arbitrary cross section. Opt. Lett. 33, 1584–1586 (2008).

    Google Scholar 

  42. Lai, Y. et al. Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell. Phys. Rev. Lett. 102, 093901 (2009).

    Google Scholar 

  43. Philbin, T. Cloaking at a distance. Physics 2, 17 (2009).

    Google Scholar 

  44. Chen, H. Y. et al. Extending the bandwidth of electromagnetic cloaks. Phys. Rev. B 76, 241104 (2007).

    Google Scholar 

  45. Yaghjian, A. D. & Maci, S. Alternative derivation of electromagnetic cloaks and concentrators. New J. Phys. 10, 115022 (2008).

    Google Scholar 

  46. Kildishev, A. V. et al. Transformation optics: Approaching broadband electromagnetic cloaking. New J. Phys. 10, 115029 (2008).

    Google Scholar 

  47. Chen, H. Y. & Chan, C. T. Electromagnetic wave manipulation by layered systems using the transformation media concept. Phys. Rev. B 78, 054204 (2008).

    Google Scholar 

  48. Li, J. & Pendry, J. B. Hiding under the carpet: A new strategy for cloaking. Phys. Rev. Lett. 101, 203901 (2008).

    Google Scholar 

  49. Liu, R. et al. Broadband ground-plane cloak. Science 323, 366–369 (2009).

    CAS  Google Scholar 

  50. Valentine, J. et al. An optical cloak made of dielectrics. Nature Mater. 8, 568–571 (2009).

    CAS  Google Scholar 

  51. Gabrielli, L. H. et al. Silicon nanostructure cloak operating at optical frequencies. Nature Photon. 3, 461–463 (2009).

    CAS  Google Scholar 

  52. Leonhardt, U. & Tyc, T. Broadband invisibility by non-Euclidean cloaking. Science 323, 110–112 (2009).

    CAS  Google Scholar 

  53. Greenleaf, A., Lassas, M. & Uhlmann, G. Electromagnetic wormholes and virtual magnetic monopoles from metamaterials. Phys. Rev. Lett. 99, 183901 (2007).

    Google Scholar 

  54. Luo, X. D. et al. Conceal an entrance by means of superscatterer. Appl. Phys. Lett. 94, 223513 (2009).

    Google Scholar 

  55. Chen, H. Y. et al. A simple route to a tunable electromagnetic gateway. New J. Phys. 11, 083012 (2009).

    Google Scholar 

  56. Leonhardt, U. & Piwnicki, P. Optics of nonuniformly moving media. Phys. Rev. A 60, 4301–4312 (1999).

    CAS  Google Scholar 

  57. Genov, D. A., Zhang, S. & Zhang, X. Mimicking celestial mechanics in metamaterials. Nature Phys. 5, 687–692 (2009).

    CAS  Google Scholar 

  58. Narimanov, E. E. & Kildishev, A. V. Optical black hole: Broadband omnidirectional light absorber. Appl. Phys. Lett. 95, 041106 (2009).

    Google Scholar 

  59. Cheng, Q. & Cui, T. J. An electromagnetic black hole made of metamaterials. Preprint at http://arxiv.org/abs/0910.2159 (2009).

  60. Rahm, M. et al. Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwells equations. Photon. Nanostr. 6, 87–95 (2008).

    Google Scholar 

  61. Kildishev, A. V. & Narimanov, E. E. Impedance-matched hyperlens. Opt. Lett. 32, 3432–3434 (2007).

    Google Scholar 

  62. Chen, H. Y. & Chan, C. T. Transformation media that rotate electromagnetic fields. Appl. Phys. Lett. 90, 241105 (2007).

    Google Scholar 

  63. Chen, H. Y. et al. Design and experimental realization of a broadband transformation media field rotator at microwave frequencies. Phys. Rev. Lett. 102, 183903 (2009).

    Google Scholar 

  64. Rahm, M. et al. Optical design of reflectionless complex media by finite embedded coordinate transformations. Phys. Rev. Lett. 100, 063903 (2008).

    Google Scholar 

  65. Huangfu, J. T. et al. Application of coordinate transformation in bent waveguides. J. Appl. Phys. 104, 014502 (2008).

    Google Scholar 

  66. Roberts, D. A. et al. Transformation-optical design of sharp waveguide bends and corners. Appl. Phys. Lett. 93, 251111 (2008).

    Google Scholar 

  67. Rahm, M. et al. Transformation-optical design of adaptive beam bends and beam expanders. Opt. Express 16, 11555–11567 (2008).

    CAS  Google Scholar 

  68. Jiang, W. X. et al. Arbitrary bending of electromagnetic waves using realizable inhomogeneous and anisotropic materials. Phys. Rev. E 78, 066607 (2008).

    Google Scholar 

  69. Mei, Z. L. & Cui, T. J. Arbitrary bending of electromagnetic waves using isotropic materials. J. Appl. Phys. 105, 104913 (2009).

    Google Scholar 

  70. Mei, Z. L. & Cui, T. J. Experimental realization of a broadband bend structure using gradient index metamaterials. Opt. Express 17, 18354–18363 (2009).

    CAS  Google Scholar 

  71. Tsang, M. & Psaltis, D. Magnifying perfect lens and superlens design by coordinate transformation. Phys. Rev. B 77, 035122 (2008).

    Google Scholar 

  72. Yan, M., Yan, W. & Qiu, M. Cylindrical superlens by a coordinate transformation. Phys. Rev. B 78, 125113 (2008).

    Google Scholar 

  73. Jiang, W. X. et al. Layered high-gain lens antennas via discrete optical transformation. Appl. Phys. Lett. 93, 221906 (2008).

    Google Scholar 

  74. Kwon, D-H. & Werner, D. H. Flat focusing lens designs having minimized reflection based on coordinate transformation techniques. Opt. Express 17, 7807–7817 (2009).

    CAS  Google Scholar 

  75. Roberts, D. A., Kundtz, N. & Smith, D. R. Optical lens compression via transformation optics. Opt. Express 17, 16535–16542 (2009).

    CAS  Google Scholar 

  76. Li, J. et al. Designing the Fourier space with transformation optics. Opt. Lett. 34, 3128–3130 (2009).

    Google Scholar 

  77. Tyc, T. & Leonhardt, U. Transmutation of singularities in optical instruments. New J. Phys. 10, 115038 (2008).

    Google Scholar 

  78. Ma, Y. G. et al. An omnidirectional retroreflector based on the transmutation of dielectric singularities. Nature Mater. 8, 639–642 (2009).

    CAS  Google Scholar 

  79. Kwon, D-H. & Werner, D. H. Polarization splitter and polarization rotator designs based on transformation optics. Opt. Express 16, 18731–18738 (2008).

    Google Scholar 

  80. Jiang, W. X. et al. Cylindrical-to-plane-wave conversion via embedded optical transformation. Appl. Phys. Lett. 92, 261903 (2008).

    Google Scholar 

  81. Ma, H. et al. Wave-shape-keeping media. Opt. Lett. 34, 127–129 (2009).

    Google Scholar 

  82. Zhai, T. R. et al. Polarization controller based on embedded optical transformation. Opt. Express 17, 17206–17213 (2009).

    CAS  Google Scholar 

  83. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    CAS  Google Scholar 

  84. Milton, G. W. et al. Solutions in folded geometries, and associated cloaking due to anomalous resonance. New J. Phys. 10, 115021 (2008).

    Google Scholar 

  85. Yang, T. et al. Superscatterer: Enhancement of scattering with complementary media. Opt. Express 16, 18545–18550 (2008).

    Google Scholar 

  86. Luo, Y. et al. Wave and ray analysis of a type of cloak exhibiting magnified and shifted scattering effect. Pr. Electromag. Res. S. 95, 167–178 (2009).

    Google Scholar 

  87. Ng, J., Chen, H. Y. & Chan, C. T. Metamaterial frequency-selective superabsorber. Opt. Lett. 34, 644–646 (2009).

    Google Scholar 

  88. Zhang, J. J. et al. Guiding waves through an invisible tunnel. Opt. Express 17, 6203–6208 (2009).

    CAS  Google Scholar 

  89. Lu, W. L. et al. Transformation media based super focusing antenna. J. Phys. D 42, 212002 (2009).

    Google Scholar 

  90. Luo, Y. et al. High-directivity antenna with small antenna aperture. Appl. Phys. Lett. 95, 193506 (2009).

    Google Scholar 

  91. Lai, Y. et al. Illusion optics: The optical transformation of an object into another object. Phys. Rev. Lett. 102, 253902 (2009).

    Google Scholar 

  92. Pendry, J. B. Optics: All smoke and metamaterials. Nature 460, 579–580 (2009).

    CAS  Google Scholar 

  93. Cummer, S. A. & Schurig, D. One path to acoustic cloaking. New J. Phys. 9, 45 (2007).

    Google Scholar 

  94. Chen, H. Y. & Chan, C. T. Acoustic cloaking in three dimensions using acoustic metamaterials. Appl. Phys. Lett. 91, 183518 (2007).

    Google Scholar 

  95. Cummer, S. A. et al. Scattering theory derivation of a 3D acoustic cloaking shell. Phys. Rev. Lett. 100, 024301 (2008).

    Google Scholar 

  96. Brun, M., Guenneau, S. & Movchan, A. B. Achieving control of in-plane elastic waves. Appl. Phys. Lett. 94, 061903 (2009).

    Google Scholar 

  97. Farhat, M. et al. Cloaking bending waves propagating in thin elastic plates. Phys. Rev. B 79, 033102 (2009).

    Google Scholar 

  98. Farhat, M., Guenneau, S. & Enoch, S. Ultrabroadband elastic cloaking in thin plates. Phys. Rev. Lett. 103, 024301 (2009).

    Google Scholar 

  99. Zhang, S. et al. Cloaking of matter waves. Phys. Rev. Lett. 100, 123002 (2008).

    Google Scholar 

  100. Lin, D-H. & Luan, P-G. Cloaking of matter waves under the global Aharonov–Bohm effect. Phys. Rev. A 79, 051605 (2009).

    Google Scholar 

  101. Farhat, M. et al. Broadband cylindrical acoustic cloak for linear surface waves in a fluid. Phys. Rev. Lett. 101, 134501 (2008).

    CAS  Google Scholar 

  102. Chen, H. Y. et al. Transformation media for linear liquid surface waves. Europhys. Lett. 85, 24004 (2009).

    Google Scholar 

  103. Pendry, J. B. & Ramakrishna, S. A. Focusing light using negative refraction. J. Phys. Condens. Matter 15, 6345–6364 (2003).

    CAS  Google Scholar 

  104. Veselago, V. G. The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Uspekhi 10, 509–514 (1968).

    Google Scholar 

  105. Milton, G. W. Fig. 2 in http://en.wikiversity.org/wiki/Waves_in_composites_and_metamaterials/Transformation-based_cloaking_in_mechanics (2009).

  106. Bergamin, L. & Favara, A. Negative index of refraction, perfect lenses and transformation optics — some words of caution. Preprint at http://arxiv.org/abs/1001.4655 (2010).

  107. Chen, H. Y. et al. The anti-cloak. Opt. Express 16, 14603–14608 (2008).

    Google Scholar 

  108. Pendry, J. B. Perfect cylindrical lenses. Opt. Express 11, 755–760 (2003).

    CAS  Google Scholar 

  109. Rmakrishna, S. A. & Pendry, J. B. Spherical perfect lens: solutions of Maxwell's equations for spherical geometry. Phys. Rev. B 69, 115115 (2004).

    Google Scholar 

  110. Zheng, G., Heng, X. & Yang, C. A phase conjugate mirror inspired approach for building cloaking structures with left-handed materials. New J. Phys. 1 1, 033010 (2009).

    Google Scholar 

  111. Chen, H. Y. & Chan, C. T. “Cloaking at a distance” from folded geometries in bipolar coordinates. Opt. Lett. 34, 2649–2651 (2009).

    Google Scholar 

  112. Dennis, M. R. A cat's eye for all directions. Nature Mater. 8, 613–614 (2009).

    CAS  Google Scholar 

  113. Tretyakov, S. et al. Broadband electromagnetic cloaking of long cylindrical objects. Phys. Rev. Lett. 103, 103905 (2009).

    Google Scholar 

  114. Smolyaninov, I. I. et al. Anisotropic metamaterials emulated by tapered waveguides: Application to optical cloaking. Phys. Rev. Lett. 102, 213901 (2009).

    Google Scholar 

  115. Miller, D. A. B. On perfect cloaking. Opt. Express 14, 12457–12466 (2006).

    Google Scholar 

  116. Vasquez, F. G., Milton, G. W. & Onofrei, D. Active exterior cloaking for the 2D Laplace and Helmholtz equations. Phys. Rev. Lett. 103, 073901 (2009).

    Google Scholar 

  117. Alitalo, P. & Tretyakov, S. Electromagnetic cloaking with metamaterials. Mater. Today 12, 22–29 (2009).

    Google Scholar 

  118. Kildal, P-S., Kishk, A. A. & Tengs, A. Reduction of forward scattering from cylindrical objects using hard surfaces. IEEE T. Antenn. Propag. 44, 1509–1520 (1996).

    Google Scholar 

  119. Alitalo, P. et al. Transmission-line networks cloaking objects from electromagnetic fields. IEEE T. Antenn. Propag. 56, 416–424 (2008).

    Google Scholar 

  120. Zharov, A. A., Shadrivov, I. V. & Kivshar, Y. S. Nonlinear properties of left-handed metamaterials. Phys. Rev. Lett. 91, 037401 (2003).

    Google Scholar 

  121. Agranovich, V. M. et al. Linear and nonlinear wave propagation in negative refraction metamaterials. Phys. Rev. B 69, 165112 (2004).

    Google Scholar 

  122. O'Brien, S. et al. Near-infrared photonic band gaps and nonlinear effects in negative magnetic metamaterials. Phys. Rev. B 69, 241101(R) (2004).

    Google Scholar 

  123. Liu, Y. et al. Subwavelength discrete solitons in nonlinear metamaterials. Phys. Rev. Lett. 99, 153901 (2007).

    Google Scholar 

  124. Zhao, Q. et al. Electrically tunable negative permeability metamaterials based on nematic liquid crystals. Appl. Phys. Lett. 90, 011112 (2007).

    Google Scholar 

  125. Hand, T. H. & Cummer, S. A. Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings. J. Appl. Phys. 103, 066105 (2008).

    Google Scholar 

  126. Lim, S., Caloz, C. & Itoh, T. Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth. IEEE Trans. Microwave Theory. 53, 161–173 (2005).

    Google Scholar 

  127. Chen, H. T. et al. Experimental demonstration of frequency-agile terahertz metamaterials. Nature Photon. 2, 295–298 (2008).

    CAS  Google Scholar 

  128. Liu, S. et al. Manipulating negative-refractive behavior with a magnetic field. Phys. Rev. Lett. 101, 157407 (2008).

    Google Scholar 

  129. Gao, Y. et al. Optical negative refraction in ferrofluids with magnetocontrollability. Phys. Rev. Lett. 104, 034501 (2010).

    CAS  Google Scholar 

  130. Drachev, V. P. et al. The Ag dielectric function in plasmonic metamaterials. Opt. Express 16, 1186–1195 (2008).

    CAS  Google Scholar 

  131. Blaber, M. G. et al. Plasmon absorption in nanospheres: A comparison of sodium, potassium, aluminium, silver and gold. Physica B 394, 184–187 (2007).

    CAS  Google Scholar 

  132. Arnold, M. D. & Blaber, M. G. Optical performance and metallic absorption in nanoplasmonic systems. Opt. Express 17, 3835–3847 (2009).

    CAS  Google Scholar 

  133. West, P. R. et al. Searching for better plasmonic materials. Preprint at http://arxiv.org/abs/0911.2737 (2009).

  134. Noginov, M. A. et al. Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium. Opt. Express 16, 1385–1392 (2008).

    CAS  Google Scholar 

  135. Fang, A. et al. Self-consistent calculation of metamaterials with gain. Phys. Rev. B 79, 241104(R) (2009).

    Google Scholar 

  136. Popov, A. K. & Shalaev, V. M. Compensating losses in negative-index metamaterials by optical parametric amplification. Opt. Lett. 31, 2169–2171 (2006).

    Google Scholar 

Download references

Acknowledgements

This work was supported by Hong Kong RGC grant numbers HKUST3/06C and 600209. Computation resources were supported by the Shun Hing Education and Charity Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanyang Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Chan, C. & Sheng, P. Transformation optics and metamaterials. Nature Mater 9, 387–396 (2010). https://doi.org/10.1038/nmat2743

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2743

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing