Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In utero surgery rescues neurological function at birth in sheep with spina bifida

Abstract

We hypothesize that the neurologic deficit associated with open spina bifida is not directly caused by the primary defect but rather is due to chronic mechanical and chemical trauma since the unprotected neural tissue is exposed to the intrauterine environment. We report here that exposure of the normal spinal cord to the amniotic cavity in midgestational sheep fetuses leads to a human-like open spina bifida with paraplegia at birth, indicating that the exposed neural tissue is progressively destroyed during pregnancy. When open spina bifida was repaired in utero at an intermediate stage, the animals had near-normal neurologic function. The spinal cord was deformed but largely preserved. These findings suggest that secondary neural tissue destruction during pregnancy is primarily responsible for the functional loss and that timely in utero repair of open spina bifida might rescue neurologic function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Shaw, G.M., Jensvold, N.G., Wasserman, C.R. & Lammer, E.J. Epidemiologic characteristics of phenotypically distinct neural tube defects among 0.7 million California births. Teratology 49, 143–149 (1994).

    Article  CAS  Google Scholar 

  2. Copp, A.J. Neural tube defects. Trends. Neurosci. 16, 381–383 (1993).

    Article  CAS  Google Scholar 

  3. Copp, A.J., Brook, F.A., Estibeiro, J.P., Shum, A.S.W. & Cockroft, D.L. The embryonic development of mammalian neural tube defects. Progr. Neurobiol. 35, 363–403 (1990).

    Article  CAS  Google Scholar 

  4. Lemire, R.J. Neural tube defects. J. Am. Med. Assoc. 259, 558–562 (1988).

    Article  CAS  Google Scholar 

  5. McLaughlin, J.F. Influence of prognosis on decisions regarding the care of newborns with myelodysplasia. New Engl. J. Med. 312, 1589–1594 (1985).

    Article  CAS  Google Scholar 

  6. Campbell, L.R., Dayton, D.H. & Sohal, G.S. A review of human and animal studies on the etiology of neural tube defects. Teratology 34, 171–187 (1986).

    Article  CAS  Google Scholar 

  7. Osaka, K., Tanimura, T., Hirayama, A. & Matsumoto, S. Myelomeningocele before birth. J. Neurosurg. 49, 711–724 (1978).

    Article  CAS  Google Scholar 

  8. Patten, B.M. Embryological stages in the establishing of myeloschisis with spina bifida. Am. J. Anat. 93, 365–395 (1953).

    Article  CAS  Google Scholar 

  9. Keller-Peck, C. & Mullen, R.J. Evidence for late neuronal degeneration in the open neural tube of curly tail mutant mice. Soc. Neurosci. Abst. 19, 181 (1993).

    Google Scholar 

  10. Emery, J.L. & Lendon, R.G. The local cord lesion in neurospinal dysraphism (meningomyelocele). J. Pathol. 110, 83–96 (1973).

    Article  CAS  Google Scholar 

  11. Cameron, A.H. The spinal cord lesion in spina bifida cystica. Lancet 2, 171–174 (1956).

    Article  Google Scholar 

  12. Jordan, M.A., Heffez, D.S. & Hutchins, G.M. The relationships of the spinal cord and meninges in meningocele, meningomyelocele and iniencephaly. Teratology 43, 472 (1991).

    Google Scholar 

  13. Schmidt, W. The amniotic fluid compartment: The fetal habitat in Advances in Anatomy Embryology and Cell Biology, (eds Beck, F et al.) 1–100 (Springer, Berlin, New York, 1992).

    Google Scholar 

  14. Lotgering, F.K. & Wallenburg, H.C.S. Mechanisms of production and clearance of amniotic fluid. Semin. Perinatal. 10, 94–102 (1986).

    CAS  Google Scholar 

  15. Langer, J.C. Etiology of intestinal damage in gastroschisis. I. Effects of amniotic fluid exposure and bowel constriction in a fetal lamb model. J. Pediatr. Surg. 24, 992–997 (1989).

    Article  CAS  Google Scholar 

  16. Tibboel, D. The natural history of gastroschisis during fetal life: Development of the fibrous coating on the bowel loops. Teratology 33, 267–272 (1986).

    Article  CAS  Google Scholar 

  17. Niku, S.D., Stein, P.C., Scherz, H.C. & Parsons, C.L. A new method for cytodestruction of bladder epithelium using protamine sulfate and urea. J. Urol. 152, 1025–1028 (1994

    Article  CAS  Google Scholar 

  18. Matsuoka, M. & Igisu, H. Comparison of the effects of L-carnitine, D-carnitine and acetyl-L-carnitine on the neurotoxicity of ammonia. Biochem. Pharmacol. 46, 159–164 (1993).

    Article  CAS  Google Scholar 

  19. Thévenet, A. & Sengel, P. Naturally occurring wounds and wound healing in chick embryo wings. Roux's Arch. Dev. Biol. 195, 345–354 (1986).

    Article  Google Scholar 

  20. Heffez, D.S., Aryanpur, J., Cuello Rotellini, N.A., Hutchins, G.M. & Freeman, J.M. Intrauterine repair of experimental surgically created dysraphism. Neurosurg. 32, 1005–1010 (1993).

    Article  CAS  Google Scholar 

  21. Micheida, M. Intrauterine treatment of spina bifida. Z. Kinderchir. 39, 259–261 (1984).

    Google Scholar 

  22. Adzick, N.S. & Harrison, M.R. Fetal surgical therapy. Lancet 343, 897–902 (1994).

    Article  CAS  Google Scholar 

  23. Gilbert, J.N., Jones, K.L., Rorke, L.B., Chernoff, G.F. & James, H.E. Central nervous system anomalies associated with meningomyelocele, hydrocephalus, and the Arnold-Chiari malformation: Reappraisal of theories regarding the pathogenesis of posterior neural tube closure defects. Neurosurgery 18, 559–564 (1986).

    Article  CAS  Google Scholar 

  24. Bregman, B. & Goldberger, M.E. Anatomical plasticity and sparing of function after spinal cord damage in neonatal cats. Science 217, 553–555 (1982).

    Article  CAS  Google Scholar 

  25. Sypniewski Bregman, B. & Bernstein-Goral, H. Both regenerating and late-developing pathways contribute to transplant-induced anatomical plasticity after spinal cord lesions at birth. Exp. Neural. 112, 49–63 (1991).

    Article  Google Scholar 

  26. Iwashita, Y., Kawaguchi, S. & Murata, M. Restoration of function by replacement of spinal cord segments in the rat. Nature 367, 167–170 (1994).

    Article  CAS  Google Scholar 

  27. Korenromp, M.J., Van Gool, J.D., Bruinse, H.W. & Kriek, R. Early fetal leg movements in myelomeningocele. Lancet 1, 917–918 (1986).

    Article  CAS  Google Scholar 

  28. Luthy, D.A. Cesarean section before the onset of labor and subsequent motor function in infants with meningomyelocele diagnosed antenatally. New Engl. J. Med. 324, 662–666 (1991).

    Article  CAS  Google Scholar 

  29. Harrison, M.R., Jester, J.A. & Ross, N.A. Correction of congenital diaphragmatic hernia in utero. I. The model: Intrathoracic balloon produces fatal pulmonary hypoplasia. Surgery 88, 174–182 (1980).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meuli, M., Meuli-Simmen, C., Hutchins, G. et al. In utero surgery rescues neurological function at birth in sheep with spina bifida. Nat Med 1, 342–347 (1995). https://doi.org/10.1038/nm0495-342

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0495-342

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing