Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Evidence for osteocyte regulation of bone homeostasis through RANKL expression

Abstract

Osteocytes embedded in bone have been postulated to orchestrate bone homeostasis by regulating both bone-forming osteoblasts and bone-resorbing osteoclasts. We find here that purified osteocytes express a much higher amount of receptor activator of nuclear factor-κB ligand (RANKL) and have a greater capacity to support osteoclastogenesis in vitro than osteoblasts and bone marrow stromal cells. Furthermore, the severe osteopetrotic phenotype that we observe in mice lacking RANKL specifically in osteocytes indicates that osteocytes are the major source of RANKL in bone remodeling in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: New method of isolating osteocytes and RANKL expression in osteocytes.
Figure 2: Osteopetrotic phenotype in osteocyte-specific Tnfsf11-deficient mice.

Similar content being viewed by others

References

  1. Takayanagi, H. Nat. Rev. Immunol. 7, 292–304 (2007).

    Article  CAS  Google Scholar 

  2. Takahashi, N. et al. Endocrinology 123, 2600–2602 (1988).

    Article  CAS  Google Scholar 

  3. Chambers, T.J., Owens, J.M., Hattersley, G., Jat, P.S. & Noble, M.D. Proc. Natl. Acad. Sci. USA 90, 5578–5582 (1993).

    Article  CAS  Google Scholar 

  4. Rodan, G.A. & Martin, T.J. Calcif. Tissue Int. 33, 349–351 (1981).

    Article  CAS  Google Scholar 

  5. Suda, T. et al. Endocr. Rev. 20, 345–357 (1999).

    Article  CAS  Google Scholar 

  6. Kong, Y.Y. et al. Nature 397, 315–323 (1999).

    Article  CAS  Google Scholar 

  7. Kim, N., Odgren, P.R., Kim, D.K., Marks, S.C. Jr. & Choi, Y. Proc. Natl. Acad. Sci. USA 97, 10905–10910 (2000).

    Article  CAS  Google Scholar 

  8. Bonewald, L.F. J. Bone Miner. Res. 26, 229–238 (2011).

    Article  CAS  Google Scholar 

  9. Hanada, R., Hanada, T., Sigl, V., Schramek, D. & Penninger, J.M. J. Mol. Med. 89, 647–656 (2011).

    Article  CAS  Google Scholar 

  10. Sobacchi, C. et al. Nat. Genet. 39, 960–962 (2007).

    Article  CAS  Google Scholar 

  11. Gu, G., Nars, M., Hentunen, T.A., Metsikko, K. & Vaananen, H.K. Cell Tissue Res. 323, 263–271 (2006).

    Article  Google Scholar 

  12. Kramer, I. et al. Mol. Cell. Biol. 30, 3071–3085 (2010).

    Article  CAS  Google Scholar 

  13. Paic, F. et al. Bone 45, 682–692 (2009).

    Article  CAS  Google Scholar 

  14. Kawamoto, S. et al. FEBS Lett. 470, 263–268 (2000).

    Article  CAS  Google Scholar 

  15. Lu, Y. et al. J. Dent. Res. 86, 320–325 (2007).

    Article  CAS  Google Scholar 

  16. Franz-Odendaal, T.A., Hall, B.K. & Witten, P.E. Dev. Dyn. 235, 176–190 (2006).

    Article  CAS  Google Scholar 

  17. O'Brien, C.A. et al. PLoS ONE 3, e2942 (2008).

    Article  Google Scholar 

  18. Seeman, E. & Delmas, P.D. N. Engl. J. Med. 354, 2250–2261 (2006).

    Article  CAS  Google Scholar 

  19. Martin, T.J. J. Musculoskelet. Neuronal Interact. 4, 243–253 (2004).

    CAS  PubMed  Google Scholar 

  20. Pivonka, P. et al. Bone 43, 249–263 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to J. Miyazaki for providing CAG-CAT-EGFP transgenic mice and U. Möhle-Steinlein for assisting the generation of A9 embryonic stem cells. We thank S. Fukuse, T. Suda-Kayamori, T. Nishioka-Honda, T. Ando, Y. Kunisawa, E. Idrus, K. Nishikawa, H. Inoue, K. Okamoto, T. Negishi-Koga, M. Shinohara, L. Bakiri, Ö. Uluçkan, N. Amizuka, K. Kayamori, A. Yamaguchi and S. Iseki for discussion and assistance. We also thank T. Wada, H. Hara, Y. Nakashima, R. Hanada, T. Hanada, A. Leibbrant, S.J. Cronin, G.G. Neely, N. Joza, J.A. Pospisilik and A. Meixner for technical assistance. This work was supported in part by a grant for the Exploratory Research for Advanced Technology Program, the Takayanagi Osteonetwork Project from the Japan Science and Technology Agency; Grant-in-Aids for Young Scientist A from the Japan Society for the Promotion of Science (JSPS); a Grant-in-Aid for Challenging Exploratory Research from the JSPS; grants for the Global Center of Excellence Program from the Ministry of Education, Culture, Sports, Science and Technology of Japan; and grants from the Tokyo Biochemical Research Foundation, the Life Science Foundation of Japan, Takeda Science Foundation, Uehara Memorial Foundation, Nakatomi Foundation, Nagao Memorial Foundation, Kowa Life Science Foundation, Naito Foundation, Ichiro Kanehara Foundation, Senri Life Science Foundation and Astellas Foundation for Research on Metabolic Disorders.

Author information

Authors and Affiliations

Authors

Contributions

T.N. generated conditional knockout mice, performed most of the experiments, interpreted the results and prepared the manuscript. M.H. participated in the in vivo analyses of the mice and prepared the manuscript. T.F. and K.K. performed experiments using the three-dimensional gel-embedded cell culture system and contributed to the osteocyte isolation experiments. M.O. assisted the in vivo analyses of the mice. J.Q.F. and L.F.B. provided Dmp1-Cre deleter mice and advice on project planning and data interpretation. L.F.B. also provided the osteocyte-like cell line MLO-Y4. T.K. conducted the GeneChip analysis. A.W. and E.F.W. generated embryonic stem cells and provided technical help. J.M.P. provided advice on project planning. H.T. directed, supervised the project and wrote the manuscript.

Corresponding author

Correspondence to Hiroshi Takayanagi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Figures 1–13 (PDF 1568 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakashima, T., Hayashi, M., Fukunaga, T. et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 17, 1231–1234 (2011). https://doi.org/10.1038/nm.2452

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2452

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing