Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1

30 January 2024 Editor's Note: Readers are alerted that concerns have been raised regarding the figures in this article. These concerns are being investigated and appropriate editorial action will be taken once this matter is resolved.

Abstract

The transcription factor X-box binding protein 1 (XBP-1) is essential for the differentiation of plasma cells and the unfolded protein response (UPR). Here we show that UPR-induced splicing of XBP-1 by the transmembrane endonuclease IRE1 is required to restore production of immunoglobulin in XBP-1−/− mouse B cells, providing an integral link between XBP-1, the UPR and plasma cell differentiation. Signals involved in plasma cell differentiation, specifically interleukin-4, control the transcription of XBP-1, whereas its post-transcriptional processing is dependent on synthesis of immunoglobulins during B cell differentiation. We also show that XBP-1 is involved in controlling the production of interleukin-6, a cytokine that is essential for plasma cell survival. Thus, signals upstream and downstream of XBP-1 integrate plasma cell differentiation with the UPR.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Induction of Xbp1 mRNA in naive B cells by IL-4.
Figure 2: IRE1-mediated splicing of Xbp1 during plasma cell differentiation.
Figure 3: Xbp1 splicing and the UPR in BCL1 terminal differentiation.
Figure 4: Production of spliced XBP-1 depends on the IgM heavy chain.
Figure 5: Ectopic expression of spliced XBP-1 enhances IgM secretion.
Figure 6: Spliced XBP-1 restores Ig production in XBP-1−/− B cells.
Figure 7: Spliced XBP-1 induces IL-6.

Accession codes

Accessions

GenBank/EMBL/DDBJ

Change history

  • 30 January 2024

    Editor's Note: Readers are alerted that concerns have been raised regarding the figures in this article. These concerns are being investigated and appropriate editorial action will be taken once this matter is resolved.

References

  1. Kozutsumi, Y., Segal, M., Normington, K., Gething, M.J. & Sambrook, J. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 332, 462–464 (1988).

    Article  CAS  PubMed  Google Scholar 

  2. Patil, C. & Walter, P. Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr. Opin. Cell. Biol. 13, 349–355 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Mori, K., Ma, W., Gething, M.J. & Sambrook, J. A transmembrane protein with a Cdc2/Cdc28-related kinase activity is required for signaling from the ER to the nucleus. Cell 74, 743–756 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Cox, J.S., Shamu, C.E. & Walter, P. Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 73, 1197–1206 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Welihinda, A.A. & Kaufman, R.J. The unfolded protein response pathway in Saccharomyces cerevisiae. Oligomerization and trans-phosphorylation of Ire1p (Ern1p) are required for kinase activation. J. Biol. Chem. 271, 18181–18187 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Shamu, C.E. & Walter, P. Oligomerization and phosphorylation of the Ire1p kinase during intracellular signaling from the endoplasmic reticulum to the nucleus. EMBO J. 15, 3028–3039 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ruegsegger, U., Leber, J.H. & Walter, P. Block of HAC1 mRNA translation by long-range base pairing is released by cytoplasmic splicing upon induction of the unfolded protein response. Cell 107, 103–114 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Cox, J.S. & Walter, P. A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell 87, 391–404 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Sidrauski, C., Cox, J.S. & Walter, P. tRNA ligase is required for regulated mRNA splicing in the unfolded protein response. Cell 87, 405–413 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Sidrauski, C. & Walter, P. The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell 90, 1031–1039 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Tirasophon, W., Welihinda, A.A. & Kaufman, R.J. A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev. 12, 1812–1824 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, X.Z. et al. Cloning of mammalian Ire1 reveals diversity in the ER stress responses. EMBO J. 17, 5708–5717 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shi, Y. et al. Identification and characterization of pancreatic eukaryotic initiation factor 2α-subunit kinase, PEK, involved in translational control. Mol. Cell. Biol. 18, 7499–7509 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Harding, H.P., Zhang, Y. & Ron, D. Protein translation and folding are coupled by an endoplasmic-reticulum–resident kinase. Nature 397, 271–274 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Yoshida, H., Haze, K., Yanagi, H., Yura, T. & Mori, K. Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose–regulated proteins. Involvement of basic leucine zipper transcription factors. J. Biol. Chem. 273, 33741–33749 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Shen, X. et al. Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development. Cell 107, 893–903 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Yoshida, H., Matsui, T., Yamamoto, A., Okada, T. & Mori, K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881–891 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Calfon, M. et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415, 92–96 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Liou, H.-C. et al. A new member of the leucine zipper class of proteins that binds to the HLA DRα promoter. Science 247, 1581–1584 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Clauss, I.M. et al. In situ hybridization studies suggest a role for the basic region–leucine zipper protein hXBP-1 in exocrine gland and skeletal development during mouse embryogenesis. Dev. Dyn. 197, 146–156 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Reimold, A.M. et al. An essential role in liver development for transcription factor XBP-1. Genes Dev. 14, 152–157 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Reimold, A.M. et al. Transcription factor B cell lineage-specific activator protein regulates the gene for human X-box binding protein 1. J. Exp. Med. 183, 393–401 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Reimold, A.M. et al. Plasma cell differentiation requires transcription factor XBP-1. Nature 412, 300–307 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Calame, K.L. Plasma cells: finding new light at the end of B cell development. Nat. Immunol. 2, 1103–1108 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Gass, J.N., Gifford, N.M. & Brewer, J.W. Activation of an unfolded protein response during differentiation of antibody-secreting B cells. J. Biol. Chem. 277, 49045–49054 (2002).

    Article  Google Scholar 

  26. Blackman, M.A., Tigges, M.A., Minie, M.E. & Koshland, M.E. A model system for peptide hormone action in differentiation: interleukin 2 induces a B lymphoma to transcribe the J chain gene. Cell 47, 609–617 (1986).

    Article  CAS  PubMed  Google Scholar 

  27. Turner, C.A. Jr., Mack, D.H. & Davis, M.M. Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell 77, 297–306 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Lin, Y., Wong, K. & Calame, K. Repression of c-myc transcription by Blimp-1, an inducer of terminal B cell differentiation. Science 276, 596–599 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Lemaire, C., Andreau, K., Souvannavong, V. & Adam, A. Specific dual effect of cycloheximide on B lymphocyte apoptosis: involvement of CPP32/caspase-3. Biochem. Pharmacol. 58, 85–93 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Lam, K.P., Kuhn, R. & Rajewsky, K. In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell 90, 1073–1083 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Peitz, M., Pfannkuche, K., Rajewsky, K. & Edenhofer, F. Ability of the hydrophobic FGF and basic TAT peptides to promote cellular uptake of recombinant Cre recombinase: a tool for efficient genetic engineering of mammalian genomes. Proc. Natl. Acad. Sci. USA 99, 4489–4494 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kawahara, T., Yanagi, H., Yura, T. & Mori, K. Unconventional splicing of HAC1/ERN4 mRNA required for the unfolded protein response. Sequence-specific and non-sequential cleavage of the splice sites. J. Biol. Chem. 273, 1802–1807 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Gonzalez, T.N., Sidrauski, C., Dorfler, S. & Walter, P. Mechanism of non-spliceosomal mRNA splicing in the unfolded protein response pathway. EMBO J. 18, 3119–3132 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hirano, T. & Kishimoto, T. Interleukin 6 and plasma cell neoplasias. Prog. Growth Factor Res. 1, 133–142 (1989).

    Article  CAS  PubMed  Google Scholar 

  35. Hallek, M., Bergsagel, P.L. & Anderson, K.C. Multiple myeloma: increasing evidence for a multistep transformation process. Blood 91, 3–21 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Wen, X.Y. et al. Identification of c-myc promoter-binding protein and X-box binding protein 1 as interleukin-6 target genes in human multiple myeloma cells. Int. J. Oncol. 15, 173–178 (1999).

    CAS  PubMed  Google Scholar 

  37. Burdin, N. et al. Endogenous IL-6 and IL-10 contribute to the differentiation of CD40-activated human B lymphocytes. J. Immunol. 154, 2533–2544 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Nelms, K., Keegan, A.D., Zamorano, J., Ryan, J.J. & Paul, W.E. The IL-4 receptor: signaling mechanisms and biologic functions. Annu. Rev. Immunol. 17, 701–738 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Rudge, E.U., Cutler, A.J., Pritchard, N.R. & Smith, K.G. Interleukin 4 reduces expression of inhibitory receptors on B cells and abolishes CD22 and FcγRII-mediated B cell suppression. J. Exp. Med. 195, 1079–1085 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brewer, J.W., Cleveland, J.L. & Hendershot, L.M. A pathway distinct from the mammalian unfolded protein response regulates expression of endoplasmic reticulum chaperones in non-stressed cells. EMBO J. 16, 7207–7216 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kishimoto, T. The biology of interleukin-6. Blood 74, 1–10 (1989).

    Article  CAS  PubMed  Google Scholar 

  42. Kopf, M., Le Gros, G., Coyle, A.J., Kosco-Vilbois, M. & Brombacher, F. Immune responses of IL-4, IL-5, IL-6 deficient mice. Immunol Rev. 148, 45–69 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Kovalchuk, A.L. et al. IL-6 transgenic mouse model for extraosseous plasmacytoma. Proc. Natl. Acad. Sci. USA 99, 1509–1514 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu, C.Y., Wong, H.N., Schauerte, J.A. & Kaufman, R.J. The protein kinase/endoribonuclease IRE1α that signals the unfolded protein response has a luminal N-terminal ligand-independent dimerization domain. J. Biol. Chem. 277, 18346–18356 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Bertolotti, A., Zhang, Y., Hendershot, L.M., Harding, H.P. & Ron, D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat. Cell Biol. 2, 326–332 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Haas, I.G. & Wabl, M. Immunoglobulin heavy chain binding protein. Nature 306, 387–389 (1983).

    Article  CAS  PubMed  Google Scholar 

  47. Lee, K. et al. IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev. 16, 452–466 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Urano, F., Bertolotti, A. & Ron, D. IRE1 and efferent signaling from the endoplasmic reticulum. J. Cell Sci. 113, 3697–3702 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Urano, F. et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287, 664–666 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Akira, S. & Kishimoto, T. NF-IL6 and NF-κB in cytokine gene regulation. Adv. Immunol. 65, 1–46 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Kopf, M. et al. Impaired immune and acute-phase responses in interleukin-6-deficient mice. Nature 368, 339–342 (1994).

    Article  CAS  PubMed  Google Scholar 

  52. Cressman, D.E. et al. Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science 274, 1379–1383 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Szabo, S.J. et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100, 655–669 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Rengarajan, J. et al. Sequential involvement of NFAT and Egr transcription factors in FasL regulation. Immunity 12, 293–300 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Lee, K. et al. IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev. 16, 452–466 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Grusby, K. Mowen, M. Oukka, S. Szabo and A. Wurster for reviewing the manuscript; K. Sigrist for producing the XBP-1-RAG chimeras; and C. McCall for preparing the manuscript. This work was supported by grants from the National Institutes of Health (L.H.G.) and a gift of the G. Harold and Leila Y. Mathers Charitable Foundation (L.H.G.). K.R. is supported by grants from the US National Institutes of Health (NIH) and by the Volkswagen Foundation. N.N.I. is supported by a fellowship from the Irvington Institute. K.L.O is supported by an NIH grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurie H. Glimcher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwakoshi, N., Lee, AH., Vallabhajosyula, P. et al. Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nat Immunol 4, 321–329 (2003). https://doi.org/10.1038/ni907

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni907

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing