Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A leucine zipper in the N terminus confers membrane association to SLP-65

Abstract

Membrane recruitment of adaptor proteins is crucial for coupling antigen receptors to downstream signaling events. Despite the essential function of the B cell adaptor SLP-65, the mechanism of its recruitment to the plasma membrane is not yet understood. Here we show that a highly conserved leucine zipper in the SLP-65 N terminus is responsible for membrane association. Alterations in the N terminus abolished SLP-65 membrane localization and activity, both of which were restored by replacement of the N terminus with a myristoylation signal. The N terminus is an autonomous domain that confers specific localization and function when transferred to green fluorescent protein or the adaptor protein SLP-76. Our data elucidate the mechanism of SLP-65 membrane recruitment and suggest that leucine zipper motifs are essential interaction domains of signaling proteins.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The conserved N terminus of SLP-65 confers plasma membrane localization in yeast.
Figure 2: SLP-65 is membrane localized in B cells through its N terminus.
Figure 3: Enrichment of SLP-65 in the membrane fraction depends on the N terminus.
Figure 4: A myristoylation signal is functionally comparable to the SLP-65 N terminus.
Figure 5: A single amino acid mutation in the N terminus abolishes SLP-65 membrane localization and function.
Figure 6: The SLP-65 N terminus renders SLP-76 active in pre-BCR signaling.

Similar content being viewed by others

References

  1. Wienands, J. et al. SLP-65: a new signaling component in B lymphocytes which requires expression of the antigen receptor for phosphorylation. J. Exp. Med. 188, 791–795 (1998).

    Article  CAS  Google Scholar 

  2. Fu, C., Turck, C.W., Kurosaki, T. & Chan, A.C. BLNK-a central linker protein in B cell activation. Immunity 9, 93–103 (1998).

    Article  CAS  Google Scholar 

  3. Kurosaki, T. & Tsukada, S. BLNK: connecting Syk and Btk to calcium signals. Immunity 12, 1–5 (2000).

    Article  CAS  Google Scholar 

  4. Jumaa, H. et al. Abnormal development and function of B lymphocytes in mice deficient for the signaling adaptor protein SLP-65. Immunity 11, 547–554 (1999).

    Article  CAS  Google Scholar 

  5. Pappu, R. et al. Requirement for B cell linker protein (BLNK) in B cell development. Science 286, 1949–1954 (1999).

    Article  CAS  Google Scholar 

  6. Hayashi, K. et al. The B cell-restricted adaptor BASH is required for normal development and antigen receptor-mediated activation of B cells. Proc. Natl. Acad. Sci. USA 97, 2755–2760 (2000).

    Article  CAS  Google Scholar 

  7. Xu, S.L. et al. B cell development and activation defects resulting in xid-like immunodeficiency in BLNK/SLP-65-deficient mice. Int. Immunol. 12, 397–404 (2000).

    Article  CAS  Google Scholar 

  8. Flemming, A., Brummer, T., Reth, M. & Jumaa, H. The adaptor protein SLP-65 acts as a tumor suppressor that limits pre-B cell expansion. Nat. Immunol. 4, 38–43 (2003).

    Article  CAS  Google Scholar 

  9. Hayashi, K., Yamamoto, M., Nojima, T., Goitsuka, R. & Kitamura, D. Distinct signaling requirements for Dμ selection, IgH allelic exclusion, pre-B cell transition, and tumor suppression in B cell progenitors. Immunity 18, 825–836 (2003).

    Article  CAS  Google Scholar 

  10. Jumaa, H. et al. Deficiency of the adaptor SLP-65 in pre-B-cell acute lymphoblastic leukaemia. Nature 423, 452–456 (2003).

    Article  CAS  Google Scholar 

  11. Engels, N., Wollscheid, B. & Wienands, J. Association of SLP-65/BLNK with the B cell antigen receptor through a non-ITAM tyrosine of Ig-α. Eur. J. Immunol. 31, 2126–2134 (2001).

    Article  CAS  Google Scholar 

  12. Kabak, S. et al. The direct recruitment of BLNK to immunoglobulin alpha couples the B-cell antigen receptor to distal signaling pathways. Mol. Cell. Biol. 22, 2524–2535 (2002).

    Article  CAS  Google Scholar 

  13. Boerth, N.J. et al. Recruitment of SLP-76 to the membrane and glycolipid-enriched membrane microdomains replaces the requirement for linker for activation of T cells in T cell receptor signaling. J. Exp. Med. 192, 1047–1058 (2000).

    Article  CAS  Google Scholar 

  14. Samelson, L.E. Signal transduction mediated by the T cell antigen receptor: The role of adapter proteins. Annu. Rev. Immunol. 20, 371–394 (2002).

    Article  CAS  Google Scholar 

  15. Singer, A.L. et al. Roles of the proline-rich domain in SLP-76 subcellular localization and T cell function. J. Biol. Chem. 279, 15481–15490 (2004).

    Article  CAS  Google Scholar 

  16. Ishiai, M. et al. Involvement of LAT, Gads, and Grb2 in compartmentation of SLP-76 to the plasma membrane. J. Exp. Med. 192, 847–856 (2000).

    Article  CAS  Google Scholar 

  17. Brdicka, T. et al. Non-T cell activation linker (NTAL): a transmembrane adaptor protein involved in immunoreceptor signaling. J. Exp. Med. 196, 1617–1626 (2002).

    Article  CAS  Google Scholar 

  18. Janssen, E., Zhu, M., Zhang, W., Koonpaew, S. & Zhang, W. LAB: a new membrane-associated adaptor molecule in B cell activation. Nat. Immunol. 4, 117–123 (2003).

    Article  CAS  Google Scholar 

  19. Broder, Y.C., Katz, S. & Aronheim, A. The ras recruitment system, a novel approach to the study of protein-protein interactions. Curr. Biol. 8, 1121–1124 (1998).

    Article  CAS  Google Scholar 

  20. Isakoff, S.J. et al. Identification and analysis of PH domain-containing targets of phosphatidylinositol 3-kinase using a novel in vivo assay in yeast. EMBO J. 17, 5374–5387 (1998).

    Article  CAS  Google Scholar 

  21. Yu, J.W. et al. Genome-wide analysis of membrane targeting by S. cerevisiae pleckstrin homology domains. Mol. Cell 13, 677–688 (2004).

    Article  CAS  Google Scholar 

  22. Cussac, D. et al. A Sos-derived peptidimer blocks the Ras signaling pathway by binding both Grb2 SH3 domains and displays antiproliferative activity. FASEB J. 13, 31–38 (1999).

    Article  CAS  Google Scholar 

  23. Vinson, C. et al. Classification of human B-ZIP based on dimerization properties. Mol. Cell. Biol. 22, 6321–6335 (2002).

    Article  CAS  Google Scholar 

  24. Rolli, V. et al. Amplification of B cell antigen receptor signaling by a Syk/ITAM positive feedback loop. Mol. Cell 10, 1057–1069 (2002).

    Article  CAS  Google Scholar 

  25. Volna, P. et al. Negative regulation of mast cell signaling and function by the adaptor LAB/NTAL. J. Exp. Med. 200, 1001–1013 (2004).

    Article  CAS  Google Scholar 

  26. Zhu, M., Liu, Y., Koonpaew, S., Granillo, O. & W., Z. Positive and negative regulation of FcεRI-mediated signaling by the adaptor protein LAB/NTAL. J. Exp. Med. 200, 991–1000 (2004).

    Article  CAS  Google Scholar 

  27. Imamura, Y., Katahira, T. & Kitamura, D. Identification and characterization of a novel BASH N-terminus associated protein, BNAS. J. Biol. Chem. 279, 26425–26432 (2004).

    Article  CAS  Google Scholar 

  28. Guo, B.C., Kato, R.M., Garcia-Lloret, M., Wahl, M.I. & Rawlings, D.J. Engagement of the human pre-B cell receptor generates a lipid raft-dependent calcium signaling complex. Immunity 13, 243–253 (2000).

    Article  CAS  Google Scholar 

  29. Johmura, S. et al. Regulation of Vav localization in membrane rafts by adaptor molecules Grb2 and BLNK. Immunity 18, 777–787 (2003).

    Article  CAS  Google Scholar 

  30. Cheng, P.C. et al. Floating the raft hypothesis: the roles of lipid rafts in B cell antigen receptor function. Semin. Immunol. 13, 107–114 (2001).

    Article  CAS  Google Scholar 

  31. Petrie, R.J., Schnetkamp, P.P.M., Patel, K.D., Awasthi-Kalia, M. & Deans, J.P. Transient translocation of the B cell receptor and Src homology 2 domain-containing inositol phosphatase to lipid rafts: Evidence toward a role in calcium regulation. J. Immunol. 165, 1220–1227 (2000).

    Article  CAS  Google Scholar 

  32. Aman, M.J. & Ravichandran, K.S. A requirement for lipid rafts in B cell receptor induced Ca2+ flux. Curr. Biol. 10, 393–396 (2000).

    Article  CAS  Google Scholar 

  33. Pfanner, N. & Geissler, A. Versatility of the mitochondrial protein import machinery. Nat. Rev. Mol. Cell Biol. 2, 339–349 (2001).

    Article  CAS  Google Scholar 

  34. Tripet, B., Wagschal, K., Lavigne, P., Mant, C.T. & Hodges, R.S. Effects of side-chain characteristics on stability and oligomerization state of a de novo-designed model coiled-coil: 20 amino acid substitutions in position d. J. Mol. Biol. 300, 377–402 (2000).

    Article  CAS  Google Scholar 

  35. Landschulz, W.H., Johnson, P.F. & McKnight, S.L. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240, 1759–1764 (1988).

    Article  CAS  Google Scholar 

  36. Marx, S.O. et al. Phosphorylation-dependent regulation of ryanodine receptors: a novel role for leucine/isoleucine zippers. J. Cell Biol. 153, 699–708 (2001).

    Article  CAS  Google Scholar 

  37. Hulme, J.T., Ahn, M., Hauschka, S.D., Scheuer, T. & Catterall, W.A. A novel leucine zipper tatgets AKAP15 and cyclic AMP-dependent protein kinase to the C-terminus of the skeletal muscle Ca2+ channel and modulates its function. J. Biochem. 277, 4079–4087 (2002).

    CAS  Google Scholar 

  38. Romero, F. & Fischer, S. Structure and function of vav. Cell. Signal. 8, 545–553 (1996).

    Article  CAS  Google Scholar 

  39. Bartkiewicz, M., Houghton, A. & Baron, R. Leucine zipper-mediated homodimerization of the adaptor protein c-Cbl. A role in c-Cbl's tyrosine phosphorylation and its association with epidermal growth factor receptor. J. Biol. Chem. 274, 30887–30895 (1999).

    Article  CAS  Google Scholar 

  40. Mumberg, D., Müller, R. & Funk, M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156, 119–122 (1995).

    Article  CAS  Google Scholar 

  41. Rose, M., Winston, F. & Hieter, P. Methods in Yeast Genetics (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1990).

    Google Scholar 

  42. Su, Y.-W. & Jumaa, H. LAT links the pre-BCR to calcium signaling. Immunity 19, 295–305 (2003).

    Article  CAS  Google Scholar 

  43. Huber, M., Hughes, M.R. & Krystal, G. Thapsigargin-induced degranulation of mast cells is dependent on transient activation of phosphatidylinositol-3 kinase. J. Immunol. 165, 124–133 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Eschbach and I. Fidler for technical assistance. Supported by the Deutsche Forschungsgemeinschaft (SFB 620 and SFB 388).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael Reth or Hassan Jumaa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

The SLP-65-GFP and DNSLP-65-GFP fusion proteins were expressed comparably. (PDF 364 kb)

Supplementary Fig. 2

Membrane association of SLP-65 is independent of BCR expression. (PDF 948 kb)

Supplementary Fig. 3

Comparable expression of the different SLP-65 constructs in pre-B cells. (PDF 486 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Köhler, F., Storch, B., Kulathu, Y. et al. A leucine zipper in the N terminus confers membrane association to SLP-65. Nat Immunol 6, 204–210 (2005). https://doi.org/10.1038/ni1163

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1163

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing