Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The mismatch repair system is required for S-phase checkpoint activation

Abstract

Defective S-phase checkpoint activation results in an inability to downregulate DNA replication following genotoxic insult such as exposure to ionizing radiation. This 'radioresistant DNA synthesis' (RDS) is a phenotypic hallmark of ataxia–telangiectasia1, a cancer-prone disorder caused by mutations in ATM2. The mismatch repair system principally corrects nucleotide mismatches that arise during replication3. Here we show that the mismatch repair system is required for activation of the S-phase checkpoint in response to ionizing radiation. Cells deficient in mismatch repair proteins showed RDS, and restoration of mismatch repair function restored normal S-phase checkpoint function. Catalytic activation of ATM and ATM-mediated phosphorylation of the protein NBS1 (also called nibrin) occurred independently of mismatch repair. However, ATM-dependent phosphorylation and activation of the checkpoint kinase CHK2 and subsequent degradation of its downstream target, CDC25A, was abrogated in cells lacking mismatch repair. In vitro and in vivo approaches both show that MSH2 binds to CHK2 and that MLH1 associates with ATM. These findings indicate that the mismatch repair complex formed at the sites of DNA damage facilitates the phosphorylation of CHK2 by ATM, and that defects in this mechanism form the molecular basis for the RDS observed in cells deficient in mismatch repair.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cells deficient in mismatch repair show RDS.
Figure 2: Activation of ATM and triggering of the NBS1 pathway occur independently of mismatch repair.
Figure 3: Activation of CHK2 and destruction of CDC25A in response to ionizing radiation are abrogated in cells deficient in mismatch repair.
Figure 4: MSH2 associates with CHK2, and MLH1 associates with ATM.
Figure 5: Proposed model for mismatch repair–dependent mechanism controlling CHK2 activation in response to DNA damage.

Similar content being viewed by others

References

  1. Painter, R.B. Radioresistant DNA synthesis: an intrinsic feature of ataxia–telangiectasia. Mutat. Res. 84, 183–190 (1981).

    Article  CAS  PubMed  Google Scholar 

  2. Savitsky, K. et al. A single ataxia–telangiectasia gene with a product similar to PI-3 kinase. Science 268, 1749–1753 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Modrich, P. & Lahue, R. Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu. Rev. Biochem. 65, 101–133 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Goldmacher, V.S., Cuzick, R.A. Jr. & Thilly, W.G. Isolation and partial characterization of human cell mutants differing in sensitivity to killing and mutation by methylnitrosourea and N-methyl-N′-nitro-N-nitrosoguanidine. J. Biol. Chem. 261, 12462–12471 (1986).

    CAS  PubMed  Google Scholar 

  5. Kat, A. et al. An alkylation-tolerant, mutator human cell line is deficient in strand-specific mismatch repair. Proc. Natl. Acad. Sci. USA 90, 6424–6428 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang, H. et al. Apoptosis induced by overexpression of hMSH2 or hMLH1. Cancer Res. 59, 3021–3027 (1999).

    CAS  PubMed  Google Scholar 

  7. Yan, T. et al. Loss of DNA mismatch repair imparts defective cdc2 signaling and G2 arrest responses without altering survival after ionizing radiation. Cancer Res. 61, 8290–8297 (2001).

    CAS  PubMed  Google Scholar 

  8. Veigl, M.L. et al. Biallelic inactivation of hMLH1 by epigenetic gene silencing, a novel mechanism causing human MSI cancers. Proc. Natl. Acad. Sci. USA 95, 8698–8702 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lim, D.S. et al. ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 404, 613–617 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Gatei, M. et al. ATM-dependent phosphorylation of nibrin in response to radiation exposure. Nat. Genet. 25, 115–119 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Zhao, S. et al. Functional link between ataxia–telangiectasia and Nijmegen breakage syndrome gene products. Nature 405, 473–477 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Falck, J., Mailand, N., Syljuasen, R.G., Bartek, J. & Lukas, J. The ATM–Chk2–CDC25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410, 842–847 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Falck, J., Petrini, J.H., Williams, B.R., Lukas, J. & Bartek, J. The DNA damage-dependent intra-S phase checkpoint is regulated by parallel pathways. Nat. Genet. 30, 290–294 (2002).

    Article  PubMed  Google Scholar 

  14. Jinno, S. et al. CDC25A is a novel phosphatase functioning early in the cell cycle. EMBO J. 13, 1549–1556 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mailand, N. et al. Rapid destruction of human CDC25A in response to DNA damage. Science 288, 1425–1429 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Baskaran, R. et al. Ataxia–telangiectasia mutant protein activates c-Abl tyrosine kinase in response to ionizing radiation. Nature 387, 516–519 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Maser, R.S., Monsen, K.J., Nelms, B.E. & Petrini, J.H. hMre11 and hRad50 nuclear foci are induced during the normal cellular response to DNA double-strand breaks. Mol. Cell. Biol. 17, 6087–6096 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Matsuoka, S. et al. Ataxia–telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc. Natl. Acad. Sci. USA 97, 10389–10394 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shiloh, Y. Ataxia–telangiectasia and the Nijmegen breakage syndrome: related disorders but genes apart. Annu. Rev. Genet. 31, 635–662 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Fritzell, J.A. et al. Role of DNA mismatch repair in the cytotoxicity of ionizing radiation. Cancer Res. 57, 5143–5147 (1997).

    CAS  PubMed  Google Scholar 

  21. Chen, S.K., Tsai, M.H., Hwang, J.J., Chang, W.P. & Chan, W.P. Determination of 8-oxoguanine in individual cell nucleus of γ-irradiated mammalian cells. Radiat. Res. 155, 832–836 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Ni, T.T., Marsischky, G.T. & Kolodner, R.D. MSH2 and MSH6 are required for removal of adenine misincorporated opposite 8-oxo-guanine in S. cerevisiae. Mol. Cell 4, 439–444 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Wang, Y. et al. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev. 14, 927–939 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Giannini, G. et al. Human MRE11 is inactivated in mismatch repair–deficient cancers. EMBO Rep. 3, 248–254 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Koi, M. et al. Human chromosome 3 corrects mismatch repair deficiency and microsatellite instability and reduces N-methyl-N′-nitro-N-nitrosoguanidine tolerance in colon tumor cells with homozygous hMLH1 mutation. Cancer Res. 54, 4308–4312 (1994).

    CAS  PubMed  Google Scholar 

  26. Umar, A. et al. Correction of hypermutability, N-methyl-N′-nitro-N-nitrosoguanidine resistance, and defective DNA mismatch repair by introducing chromosome 2 into human tumor cells with mutations in MSH2 and MSH6. Cancer Res. 57, 3949–3955 (1997).

    CAS  PubMed  Google Scholar 

  27. Nehme, A. et al. Differential induction of c-Jun NH2-terminal kinase and c-Abl kinase in DNA mismatch repair-proficient and -deficient cells exposed to cisplatin. Cancer Res. 57, 3253–3257 (1997).

    CAS  PubMed  Google Scholar 

  28. Buermeyer, A.B., Wilson-Van Patten, C., Baker, S.M. & Liskay, R.M. The human MLH1 cDNA complements DNA mismatch repair defects in Mlh1-deficient mouse embryonic fibroblasts. Cancer Res. 59, 538–541 (1999).

    CAS  PubMed  Google Scholar 

  29. Brown, K.D. et al. The ataxia–telangiectasia gene product, a constitutively expressed nuclear protein that is not upregulated following genome damage. Proc. Natl. Acad. Sci. USA 94, 1840–1845 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee, C.H. & Chung, J.H. The hCds1 (Chk2)-FHA domain is essential for a chain of phosphorylation events on hCds1 that is induced by ionizing radiation. J. Biol. Chem. 276, 30537–30541 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank S. Elledge for supplying the GST–CHK2 plasmid, J. Lazo for the GST–CDC25A plasmid and B. Gebhardt for access to the 137Cs irradiator. This work was supported by grants from the American Cancer Society to K.D.B. and R.B. and the US National Institutes of Health to R.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Baskaran.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, K., Rathi, A., Kamath, R. et al. The mismatch repair system is required for S-phase checkpoint activation. Nat Genet 33, 80–84 (2003). https://doi.org/10.1038/ng1052

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1052

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing